
with Continuous Query Technology

Building

Real-Time-
Applications

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

JAVA DEVELOPER’S JOURNAL EDITORS’ CHOICE AWARDS PAPP GE 54

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2006

 JDJ.SYS-CON.COM VOL.11 ISSUE:8

No. 1 i-Technology Magazine in the World

SEE PAGES 54-55
FOR DETAILS

SANTA CLARA CONVENTION CENTER
W W W . A J A X W O R L D E X P O . C O M

OCT 3-4 2 0 0 6

JDJad-Quest-0506.indd 1 4/20/06 10:51:53 AM

	 want back in the ’90s...seriously.
Ten years ago I didn’t know Java:
I’d been using PowerBuilder and
was able to program pretty much

everything in this RAD object-oriented
tool. To find a job back then, all I needed
to have on my résumé was PB, a single
framework (PFC), and SQL. With these
skills I could have created a prototype
of a rich CRUD client/server application
in a couple of days. However, that was
the sunset of the client/server era.
	 While making the deployment of the
client software easier, the Web pushed
the user-facing applications years
back. Just look at these ugly screens:
several plain text boxes, a dropdown,
and a trivial HTML table. Mainframe
dumb terminals had black screens
with green letters, but the interaction
with the big iron was super fast. The
Web offered a white background with
black letters and poor performance.
But the entire world was so happy with
this new way of accessing the wealth
of data and tons of e-commerce op-
portunities, that people were willing
to put up with some minor inconve-
niences.
	 GoF had released a famous book on
design patterns. I wonder if anyone
has read this manuscript from start to
finish? This book was the first step in
turning programming from an art to a
trade. Singleton, MVC, Factories, value
objects…just pick up the proper design
pattern(s), and your code will look as if
it was written by an expert. Don’t forget
to comment your programs explaining
which design patterns were used in your
code. There still is a small number of
programmers who get by without pat-
tern programming, but they’ll be extinct
soon.
	 SQL was in favor in the ’90s. People
knew how to delete duplicates from a
database table by applying such SQL
clauses as group by and having. How
many people have read the book by Joe
Celko, SQL for Smarties? Let me put it
another way. How many people know
what SQL is? Why bother, Hibernate
will let me map class attributes to the

database table columns. How nice…I’m
drowning in XML now. Let’s not jump
ahead though; mankind did not know
Hibernate or XML back then.
	 The Java programming language was
born. It became visible as a language for
creating applets, but it quickly aban-
doned the desktop and started to shine
on the server side. It took Sun almost 10
years to realize that desktop program-
ming is also important and it’s time to
create a Swing-based RAD tool.
	 The end of the last century can be
called the Gold Rush of Programming.
People started to spread the fear of Y2K
issues. Since the dates were stored as
two digits, some nuclear explosion or
a less serious disaster was expected on
January 1, 2000. For example, I’d never
include “’96–’06” in the title of this ar-
ticle. Why? Because 06 minus 96 is equal
to negative 10. Get it? Lots of people
quickly became programmers with the
noble mission of saving mankind. Lots
of IT managers quickly climbed the
corporate ladder working on this noble
mission.
	 In the beginning of the new century,
XML became popular. Yes, it was a nice
way to describe data, but at the same
time it was too heavy. It did not manage
to kill the CSV format – the hype is over
– but it did find its use in a variety of
applications.
	 Microsoft came out with .NET plat-
form, which became a direct competitor
of J2EE. These two mainstream tech-
nologies cover most of the enterprise
software development.
	 Another important trend of this
century is the spread of open source
software. In the past, vendors used to
sell software licenses, but now many of
them give the software away for free and
sell services instead. The documenta-
tion of our open source product may be
poor, but no worries, we’ll be happy to
help you with our great tool for an extra
fee.
	 What are the latest notable trends?
Let me throw in a couple of buzzwords.
	

Editorial

Unofficial History of
Programming: ’96 – ’06

	 Editorial Board	

	 Java EE Editor:	 Yakov Fain

 	 Desktop Java Editor:	 Joe Winchester

	 Eclipse Editor:	 Bill Dudney

	 Enterprise Editor:	 Ajit Sagar

	 Java ME Editor:	 Michael Yuan

	 Back Page Editor:	 Jason Bell

	 Contributing Editor:	 Calvin Austin

	 Contributing Editor:	 Rick Hightower

	 Contributing Editor:	 Tilak Mitra

	 Founding Editor:	 Sean Rhody

Production
	 Associate Art Director:	 Tami Lima
	 Executive Editor:	 Nancy Valentine
	 Research Editor:	 Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

I
By Yakov Fain

– continued on page 59

�August 2006JDJ.SYS-CON.com

Altova® UModel® 2006 – The starting point for successful software development.

UML is a trademark or registered trademark
of the Object Management Group, Inc. in the
United States and other countries.

Visualize works
of software art

Draw on UModel® 2006, and picture

better programs based on UML™.

Spied in UModel 2006 Release 2:
l Activity diagrams

l State machine diagrams
l Component structure diagrams

l Context-specific toolbars

Altova UModel 2006, the burgeoning new force

in the software design space, is the simple,

cost-effective way to draw on UML. Use

it to interpret or create your software

architecture. Decode Java or C#

programs into clear, accurate UML2

diagrams, or outline applications

and generate code from your plans.

With all major diagram types,

interoperability via XMI 2.1, and an

artful user interface, UModel makes

visual software design practical for

programmers and project managers

everywhere. Take the mystery out of UML!

Download UModel® 2006 today:
www.altova.com

UModel_JDJ.qxp 7/6/2006 11:30 AM Page 1

August 2006 VOLUME:11 ISSUE:8

contents

JDJ (ISSN#1087-6944) is published monthly (12 times
a year) for $69.99 by SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645. Periodicals
postage rates are paid at Montvale, NJ 07645 and

additional mailing offices. Postmaster: Send address
changes to: JDJ, SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645.

Editorial

Unofficial History of
Programming: ’96–’06
by Yakov Fain

. .3
Viewpoint

Where Are the High-Level Open
Source Design Tools?
by Ed Merks

. .6
Mobile Java

Integral Java: A Single Solution for
Bypassing the Pitfalls of
Split Stacks
The future of mobile Java

by John McCready

. .8

DMA

Detecting J2EE Problems Before
They Happen
Derived Model Analysis

by Alan West & Gordon Cruickshank

. . .20

SDO

Data Access Services
How to access relational data in terms of

Service Data Objects

by Kevin Williams & Brent Daniel

. .32
Desktop Java Viewpoint

The Death of Mediocrity
by Joe Winchester

. .48

IDE

Managing a Standardized Build
Process Outside of the Eclipse IDE
Point-and-click solutions won’t cut it

by Steve Taylor

. .50
Awards

JDJ Editors’ Choice Awards
. .56
JSR Watch

The JCP Program:
Beyond the 300 Mark
by Onno Kluyt

. .58
Feedback

Letters to the Editor
. .60

38by Gideon Low & Jags Ramnarayan

10
Jakarta Struts &
JavaServer Faces

by Heman Robinson

JDJ Cover Story Features

A Generic JMS Listener
for Apache Axis 1.x

by Parameswaran Seshan

28

�August 2006JDJ.SYS-CON.com

n answer to the question “Where are the
high-level Open Source design tools for
Java?” I believe that they’re emerging from
efforts at Eclipse.org. These efforts began

with the Eclipse Modeling Framework (EMF) in
2002, and have been building momentum ever
since, with the addition of the UML2 project,
the Graphical Modeling Framework (GMF), the
Generative Modeling Tools (GMT) Project, and
Model Driven Data Integration (MDDl). More
recently, with the creation of the new top-level
Eclipse Modeling Project (http://www.eclipse.
org/modeling) to act as a home and focal point
for all of these modeling related technologies,
there is clearly an ever-growing focus in this
area. So what does it all mean and what’s behind
the acronyms?
	 The focus of the Modeling Project is on bridg-
ing the design-versus-development gap using a
bottom-up approach. We’re building practical
development tools and frameworks, evolving
them over time, and using them ourselves to
build the subsequent layers of the onion.
	 For example, given just an XML Schema as
input, EMF and GMF can generate a fully func-
tional graphical application ready to be tailored
and specialized. Furthermore, since the genera-
tor technology supports merging, a developer
can switch between modeling and hand-coding.
This is essential for the adoption of high-level
tools by a community that likes to view them
as a dimmer switch it can adjust to suit various
skill levels, rather than “all dark” or “all light”
tools that replace hand-coding. And since the
model can be specified in the form of annotated
Java (which the generator produces to support
round-tripping) it’s possible for a developer to
work completely in Java without buying into the
whole sales pitch of the model-driven approach.
	 We validate these ideas by eating our own dog
food: EMF models are used extensively through-
out the Modeling Project, and many of our tools
are based on EMF-generated editors. Now, with
GMF maturing, we’re beginning to use it as the
basis for more sophisticated, user-friendly tools.
	 The Eclipse modeling tools are trying to ap-
peal to as broad a target audience as possible by
supporting many different development styles,
something that hasn’t occurred in the past and
that, hopefully, will dispel the myth that model-
ing and coding are mutually exclusive or just
rigid one-way processes.
	 I believe the main stumbling blocks to accep-
tance of design tools have been the rigidity and

complexity of the methodology itself and the
poor quality of the artifacts that they generate.
To address the former issue, the Eclipse model-
ing tools have focused on building exemplary
support around a very simple core model rather
than around something much more complex.
To address the latter issue, we’ve focused on
producing code of handwritten quality. If a tool
doesn’t produce high-quality code, language-flu-
ent developers will often reject it.
	 To understand the target audience for model-
ing tools, I often relate back to my own experi-
ences and how my thinking has evolved over the
years. When I was first exposed to MOF (Meta
Object Facility), I didn’t know how to read UML
diagrams, so I was immediately convinced that
they were a useless diversion. “What’s wrong with
plain old Javadoc?” Then, I looked at the gener-
ated code, and I was immediately convinced that
it was too verbose and inefficient to be of any
use at runtime. “I’d never write such garbage by
hand!” And, when forced to learn the meta-model
itself, I was immediately convinced that it was full
of extraneous baggage. “Who needs all this stuff?”
	 Despite my “well considered” objections, I con-
tinued to use MOF in my day job and had much
time to reconsider. Having learned to read a class
diagram, it didn’t take long to be convinced of the
cliché “a picture is worth a thousand words.” It
also became clear that if it’s silly to draw a picture
of a labeled box containing a labeled feature, it’s
even sillier to write by hand, possibly thousands
of times, an interface with a getter, a setter, an
implementation class with the same things as
well as a field to store the data, and last but not
least, a factory method to create the instance. All
of this is menial work that’s beneath the skilled
developer. Ironically, the very simplicity of the
diagrams that made them seem silly is precisely
where their value lies.
	 The code being generated was of poor ma-
chine-written quality, but it quickly became clear
that this could easily be addressed by producing
simple, clean code that looked exactly like I’d
write by hand. For example, a getter need not do
anything more than return the value of a variable.
And, by using a template-based approach, we
could provide flexibility and control to any de-
veloper, letting him tailor what’s produced by the
generator to fit his specific needs or tastes. Add
to this a generator that can merge its output with
existing code, and you reach my tipping point: a

Viewpoint

Where Are the High-Level
Open Source Design Tools?

President and CEO:

	 Fuat Kircaali	 fuat@sys-con.com

Group Publisher:

	 Jeremy Geelan	 jeremy@sys-con.com

Advertising

Senior Vice President, Sales and Marketing:

	 Carmen Gonzalez	 carmen@sys-con.com

Vice President, Sales and Marketing:

	 Miles Silverman	 miles@sys-con.com

	 Robyn Forma	 robyn@sys-con.com

Advertising Sales Manager:

	 Megan Mussa	 megan@sys-con.com

Associate Sales Managers:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

	 Nancy Valentine	 nancy@sys-con.com

Production

Lead Designer:

	 Louis F. Cuffari	 louis@sys-con.com

Art Director:

	 Alex Botero	 alex@sys-con.com

Associate Art Directors:

	 Abraham Addo	 abraham@sys-con.com

	 Tami Lima	 tami@sys-con.com

Web Services

Information Systems Consultant:

	 Robert Diamond	 robert@sys-con.com

Web Designers:

	 Stephen Kilmurray	 stephen@sys-con.com

	 Wayne Uffleman	 wayne@sys-con.com

Accounting

Financial Analyst:

	 Joan LaRose	 joan@sys-con.com

Accounts Payable:

	 Betty White	 betty@sys-con.com

Accounts Receivable:

	 Gail Naples 	 gailn@sys-con.com

 Customer Relations

Circulation Service Coordinator:

	 Edna Earle Russell	 edna@sys-con.com

JDJ Store Manager:

	 Brunilda Staropoli	 bruni@sys-con.com

by Ed Merks

I

– continued on page 59

JDJ.SYS-CON.com�	 August 2006

ava, in the form of the Java 2
Platform Micro Edition (J2ME),
has become a prerequisite for all
future mobile handsets for at least
the next seven to nine years. Not

only will the core applications needed
for the user experience be created in
Java, it will also serve as the basis for
the lucrative downloadable applica-
tion market – the Java segment of
which is currently projected to exceed
$15 billion by 2008.
	 If there are any remaining questions
as to the pivotal role Java is destined to
play in the mobile industry, consider
the following numbers. By mid-2006,
the installed base of Java enabled
handsets will cross the billion-unit
mark, with over 35 vendors already
offering upwards of 600 different Java-
enabled handset models. Furthermore,
over four million software develop-
ers, per 3G Americas’ estimates in
mid-2005, are now involved in creating
J2ME-specific software to feed, as well
as fuel, this burgeoning demand for
Java-based functionality for mobile
handsets.
	 Despite all of these inescapable
positives, handset manufacturers are
still facing a major challenge on the
Java front. Their approach to provid-
ing Java capability on handsets has
become passé – plagued by inef-
ficiencies, fraught with application
integration complications, and above
all, vulnerable to security risks. All of
these problems stem from the fact that
manufacturers never set out to fully
and tightly integrate the necessary Java
platform [i.e. J2ME] with the native
handset OS kernel, the handset en-
gines/codecs, and the native libraries.
With this two-stack approach, there

exists a native stack with its own set
of exposed APIs. Then, there’s the Java
stack, with exposed APIs also grafted
atop the native stack.
	 In short, the two-stack approach
offers a seriously flawed foundation
unsuitable to support a Java future.
	 Yet, groundbreaking developments
have been taking place and a much
better way to implement mobile
Java has emerged, one that permits
handset makers to overcome all of the
problems associated with the con-
ventional two-stack approach. With
this new platform, manufacturers can
provide developers with a single-stack
that supports all the strategic Java
APIs, while providing the necessary
access to the native engines, codecs,
and libraries via the Java APIs. It’s a real
win-win solution without any limita-
tions or drawbacks.

The Conventional Two-Stack
Approach to Java
	 In 2001, handset makers were con-
fronted with the need to support Java,
primarily to accommodate download-
able Java applications. At that juncture,
the native handset OS (Symbian),
the OS services, and middleware
(access to the handset engines and
codecs), the handset services (phone
settings), handset application (Web
browser), and the native libraries were
all being developed in C. Rather than
making any changes to this native
infrastructure to tightly integrate Java,
manufacturers opted instead to create
a host-porting layer on top of their na-
tive libraries as the basis of their Java
support.
	 A Java KVM was then implemented
on top of the host-porting layer, where

a KVM is a J2ME-specific subset of a
Java virtual machine (JVM). This KVM
then served as the platform for Java
libraries, with their Java APIs. Suffice it
to say, this was not a very efficient way
to realize Java. The two-stack approach
compromises Java performance,
compounds application integra-
tion complexity, and at a minimum
doubles the amount of software test-
ing (and quality assurance) that has to
be performed. All of that, bad enough
as it is, is not the limit of the pitfalls
associated with this approach.
	 This two-stack approach, with
native APIs exposed to all, is also
an unmitigated security nightmare.
Access to the native APIs, as manu-
facturers and operators are acutely
aware of, enables hackers to easily
create malicious viruses, worms, and
spyware. Thus, the current goal, across
the industry, is to try to restrict access
to the native APIs. However, with the
two-stack approach it’s difficult to
restrict access to the native APIs since
bona fide developers have to use these
APIs to interact with libraries, codecs,
and engines.
	 Fortunately, a new single-stack
approach provides an elegant and uni-
versal solution to this security problem
as well as all the other complexity and
inefficiency-related issues associated
with two stacks.

The Single-Stack Java Solution
	 With a single-stack platform, hand-
set makers no longer have to expose
their native APIs to the software
development community-at-large.
Software developers can instead use
one set of strategic broad-spectrum
Java APIs for all of their needs includ-

Mobile Java

by John McCready

Integral Java: A Single Solution for
Bypassing the Pitfalls of Split Stacks

J

A new single stack platform, one set of APIs for everything,
and the future of mobile Java

John McCready is

senior vice-president of

marketing for SavaJe

Technologies, developers

of the most advanced Java

technology-based mobile

operating platform. The

SavaJe-based Jasper S20

mobile phone was named

“Device of the Show”

at the 2006 JavaOne

Conference. The SavaJe

Mobile Platform radically

simplifies and acceler-

ates the development of

highly customizable, richly

branded, and secure user

interfaces across mobile

feature phone handsets.

JDJ.SYS-CON.com�	 August 2006

ing that of accessing the handset’s
native engines and codecs. The graphs
below illustrate how the single-stack
approach markedly differs from the
conventional two-stack approach that
manufacturers have been employing.
	 To ensure that software develop-
ers gain uncompromised access
to everything they need on the
handset using just Java APIs, the
single-stack platform goes well
beyond just implementing the basic
amount of functionality required to
be J2ME-compliant. Unlike Java 2
Enterprise Edition (J2EE) and Stan-
dard Edition (J2SE) – where there’s
only one version of the platform
– J2ME (as shown in Figure 2) has
two variants known as configura-
tions. The Java functionality avail-
able with each of the two configu-
rations is defined in terms of the
core libraries to be included with
that configuration as well as by
the capabilities of the Java virtual
machine associated with it.
	 The two different J2ME configura-
tions are:
1.	Connected Limited Device

Configuration (CLDC), and
2.	Connected Device Configuration

(CDC).

	 CDLC, as noted by the “limited”
in its name, is meant for low-cost,
limited-function devices, while CDC
is for more sophisticated mobile
devices. CLDC, as shown in Figure
2, can be implemented with a KVM
(alimited function subset of a JVM),
while CDC, in common with J2EE
and J2SE, requires a full JVM. Thus,
CDC, from the get-go, has more in
common with mainstream Java than
CDLC does.
	 CLDC and CDC, as again shown in
Figure 2, have so-called profiles imple-
mented on top of the configurations.
These profiles define the requisite
Java software functionality and the
API repertoire for a specific class of
device. At present there are two key
profiles defined for J2ME: the Mobile
Information Device Profile (MIDP)
and Personal Profile (PP). MIDP (now
at version 2.0), which is to be used
with CLDC, defines basic connectivity,
persistent storage, networking, and
user interface functionality. MIDP is
targeted at low-end handsets. On the
other hand, PP, meant to be used with
CDC, is for high-end devices, includ-
ing PDAs.

	 The single-stack platform imple-
ments both CDC as well as CLDC/
MIDP2.0. It thus provides software
developers with a complete set of
J2ME APIs that is more comprehen-
sive, feature-rich, and powerful than
the APIs available with just MIDP. This
is the crux of the solution. Thanks to
the availability of this expanded set of
Java APIs, software developers are no
longer as dependent on native APIs
as they previously were. Now they can
use Java APIs for all needs, whether
it’s to develop core handset utilities or
value-added, downloadable applica-
tions.
	 The advantages of this single-stack
approach are many and obvious, posi-
tively benefiting not just the handset
makers but also developers, operators,
service providers, and even users. The
key advantages of the single-stack ap-
proach include:
•	 Reduction in development and test-

ing costs by reduced
software duplication
and complexity;

•	 Major improvement
in software security,
greatly minimizing the
disruptive threats of
viruses and spyware,
by obviating the need
for exposed native
APIs;

•	 Simplifying the data
sharing between
applications (chat and
address book) through
the use of common
APIs and libraries;

•	 Standardization on
Java, without the need
to flip-flop between
Java and native code,
thus promoting the
creation of a more con-
sistent and cohesive
user experience;

•	 Reducing development
and testing schedules,
expediting overall
time-to-market;

•	 Tangible increases in
Java performance by
tighter integration with
the OS kernel (without
using an intermediary
host porting layer).

The Bottom Line
	 Java has become a
mandatory prerequisite

for future handsets. The conventional
approach of implementing Java as a
separate stack grafted on top of the
native libraries via a host-porting layer
is fraught with problems – security,
performance, and inefficiency being
key among these. The new single-
stack platform, which with a stroke
implements both J2ME CDC and
CLDC/MIDP2.0, eliminates all of the
problems associated with the two-
stack approach. Rather than having to
contend with multiple stacks, with two
competing sets of APIs, the single-
stack approach provides one unified
stack with one set of APIs. By reducing
software duplication and complex-
ity, this new approach reduces costs,
expedites time-to-market, enhances
security, enforces consistency, and
increases performance. It, in reality,
is the only way to go forward when it
comes to J2ME on mobile handsets.
Period.

 Figure 1 An all-encompassing single-stack approach eliminates, at a stroke, all the inefficiencies, complexities, dupli-

cation, and security concerns associated with the conventional two-stack approach.

 Figure 2 In contrast to J2EE and J2SE where there are only one version of the platform, J2ME comes in two variants

known as configurations

�August 2006JDJ.SYS-CON.com

previous article compared Jakarta Struts and
JavaServer Faces implementations of five simple de-
sign patterns for list selection. (JDJ, Vol. 11, Issue 3).
 Long lists and ordered selections require a more
complex design pattern. This pattern displays

available items in one list and chosen items in another so the
user’s choices are always visible and easily modified.
	 This design pattern is commonly called a Dual List or Dual
Listbox selector. It is also known as the Selection Summary or
List Builder pattern. In the Java Look and Feel Design Guide-
lines, it’s called the Add-and-Remove pattern:
	 Typical Struts implementations of this pattern require JSPs,
Java, and JavaScript. JavaServer Faces doesn’t need JSPs, but
they’re used here for easy comparison.
	 Listing 1 shows the JSP for Struts and Listing 2 shows the
JSP for JavaServer Faces. Complete code listings for the back-
ing beans, config files, and other code for all six list selection
patterns can be downloaded from the JDJ Web site.

Jakarta Struts Implementation
	 Using Jakarta Struts, the JSP for this pattern defines a table
layout with three columns. In the first and third columns, the
Available and Chosen lists are implemented using the Struts
tags <html:select> and <html:optionsCollection>. For inter-
nationalization, the labels can use the <fmt:message> tag
from the JavaServer Pages Standard Tag Library. Many people
find Struts and JSTL tags a powerful combination.

<table border=”0” cellpadding=”0” cellspacing=”5”>

 <tr align=”middle” valign=”center”>

 <td>

 <fmt:message key=”titles.available”/>

 <html:select property=”availableValues”

 multiple=”true” size=”7”

 style=”width:80px;” styleId=”available”

 onchange=”doUpdate(false, true);”>

 <html:optionsCollection

 property=”availableList”/>

 </html:select>

 </td>

 ...

 <td>

 <fmt:message key=”titles.chosen”/>

 <html:select property=”chosenValues”

 multiple=”true” size=”7”

 style=”width:80px;” styleId=”chosen”

 onchange=”doUpdate(true, false);”>

 <html:optionsCollection

 property=”chosenList”/>

 </html:select>

 </td>

 </tr>

</table>

	 The form bean contains the “availableList,” “availableVal-
ues,” “chosenList,” and “chosenValues” properties used in the
JSP.

private List availableList = new ArrayList();

private String[] availableValues = new String[0];

private List chosenList = new ArrayList();

private String[] chosenValues = new String[0];

 ...

public List getAvailableList()

public void setAvailableList(List list)

public String[] getAvailableValues()

public void setAvailableValues(String[] list)

public List getChosenList()

public void setChosenList(List list)

public String[] getChosenValues()

public void setChosenValues(String[] list)

 ...

	 The “availableList” and “chosenList” properties store the
lists of available values as LabelValueBeans. The “availableV-
alues” and “chosenValues” properties store the selected
values as arrays of Strings.
	 For the Add-and-Remove pattern, these selected values are
of no interest. We don’t have to tell the server which values
are selected but which items appear in the list contents.

A

Jakarta Struts &
JavaServer Faces
The add-and-remove pattern

by Heman Robinson

JDJ.SYS-CON.com10	 August 2006

However, when forms are submitted, list contents don’t get
sent back to the server; only their selected values do. This is
usually the most efficient way to process forms, but for this
design pattern it’s a problem.
	 There are several ways to solve this problem. One
way is to submit the form every time the list contents
change. This produces excess screen refreshes and
network traffic. Another way is to use AJAX technology
to communicate with the server. This reduces screen
refreshes, but still generates network traffic. There’s no
need to generate network traffic until the user com-
pletes their changes.
	 The best solution is to store the selected values in a hid-
den control. This way the values get sent back to the server
only once, when the form is submitted. It’s sufficient to store
only the chosen values; changes to both lists can be derived
from them. In this example, we’ll store the chosen values as a
delimited string in a hidden text field.
	 Using this hidden field, the buttons in the middle column
can be implemented as follows:

<td>

 <input type=”button” style=”width:100px;”

 id=”add” onclick=”

 doMove(‘available’, ‘chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=

 “doMove(‘available’, ‘chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;”

 id=”remove” onclick=

 “doMove(‘chosen’, ‘available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=

 “doMove(‘chosen’, ‘available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 <html:hidden styleId=”chosenItem”

 property=”chosenItem” />

</td>

	 The buttons are implemented using standard HTML <in-
put> tags. The <html:hidden> field stores the chosen items
as a delimited string. The items are stored by invoking the
JavaScript “doMove()” function, which performs all four of
the button actions:

/**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

function doMove(sourceId, destId, all)

{

 // Move the items between the lists.

 var sourceElem =

 document.getElementById(sourceId);

 var destElem =

 document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text =

 sourceElem.options[i].text;

 newOption.value =

 sourceElem.options[i].value;

 destElem.options[destElem.length] =

 newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate(false, false);

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“chosenItem”);

 var chosenList =

 document.getElementById(“chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

}

	 Besides implementing the button actions, it eases the us-
ers’ learning curve to disable these actions when they don’t
make sense. For example, when there are no selected items,
the “Add” and “Remove” buttons can’t be used. When the
available list or chosen list is empty, the “Add All” or “Remove
All” button can’t be used.
	 The “doUpdate()” function enables or disables the but-
tons based on the user’s selections and the list contents.

“JSF provides a natural
migration path
for projects moving
from Struts”

11August 2006JDJ.SYS-CON.com

Feature

The “doUpdate()” function is invoked from the “doMove()”
function above as an “onchange” handler for the lists, and as
an “onload” handler in the <body> tag to initialize the button
states.

/**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested to ensure

 * at most one list contains selections.

 * <p>

 * @param offAvailable deselect available list

 * @param offChosen deselect chosen list

 */

function doUpdate(offAvailable, offChosen)

{

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“available”);

 var chosenList =

 document.getElementById(“chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

}

	 Using these JavaScript functions, list contents are correctly
updated and the user’s chosen items are stored in the hidden
field. When the form is submitted, the user’s “chosen” list is
read from the hidden field. In this example, it’s used to re-
populate both lists to reflect the user’s choices.
	 Lists are re-populated by using the “languageList” in the
form bean. This is a constant list containing all possible
choices. The “move” method of the form bean manipulates
the “available” and “chosen” lists based on the contents of the
hidden “chosenItem” field.

private List languageList = new ArrayList();

private String chosenItem = “”;

 ...

public List getLanguageList()

public void setLanguageList(List list)

 Figure 1 Add-and-remove pattern

 Figure 2 Enabled and disabled buttons

JDJ.SYS-CON.com12	 August 2006

You program in Java,
but still use a relational database.

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache21P
© 2006 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 7-06 CacheInno21JDJ

Unlike relational databases, Caché is a perfect match as the back end for object-
oriented programming. It’s the world’s fastest object database, and runs SQL queries
up to 5 times faster than relational databases. Plus, with an innovation by InterSystems
called Jalapeño™, Caché persists Java objects without relational mapping – reducing
development time for Java programmers by as much as 40%.

Caché delivers massive scalability on minimal hardware, requires little administration,
and incorporates a rapid Web application development environment. It’s available for
Unix, Linux, Windows, Mac OS X, and OpenVMS – and is deployed on more than
100,000 systems ranging from two to over 50,000 users.

We are InterSystems, a global software company with a 28-year track record of
innovations that enrich applications.

There’s something wrong with this picture.

Back end:
Relational database

Front end:
Object-oriented programming

CacheInno21 JDJ.qxp 7/13/06 8:35 PM Page 1

Feature

public String getChosenItem()

public void setChosenItem(String items)

public void move(List sourceList,

 String[] sourceValues, List destList)

 ...

	 The “languageList” and “chosenItem” fields and the
“move” method are accessed from the “execute” method of
the form’s submit action. In the Struts implementation, this is
an instance of the Struts Action class.

/**

 * Populate the lists from the hidden field.

 * <p>

 * @param mapping action mapping

 * @param form action form

 * @param request HTTP servlet request

 * @param response HTTP servlet reponse

 * @throws Exception

 */

public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

{

 // Populate available list from language list.

 ExampleForm eForm = (ExampleForm)form;

 eForm.getAvailableList().clear();

 eForm.getAvailableList().addAll(

 eForm.getLanguageList());

 // Populate chosen list from hidden field.

 eForm.getChosenList().clear();

 eForm.move(eForm.getAvailableList(),

 eForm.getChosenItem().split(“\\|”),

 eForm.getChosenList());

}

JavaServer Faces Implementation
	 What is needed to implement this design pattern in
JavaServer Faces? JSF is designed by some of the same people
who designed Struts so we hope for a smooth migration path.
	 In JavaServer Faces, the JSP for the two lists is smaller, because
JSF’s tags are more compact. Instead of <table>, <tr>, and <td>,
JSF uses <h:panelGrid>. Instead of <fmt:message>, JSF uses <h:
outputText>. Instead of <html:select> and <html:optionsCollec-
tion>, JSF uses <h:selectManyListbox> and <f:selectItems>.

<h:panelGrid columns=”3” rowClasses=”center”>

 <h:outputText value=”#{bundle.available}” />

 <h:outputText value=”” />

 <h:outputText value=”#{bundle.chosen}” />

 <h:selectManyListbox style=”width:100px; height:120px;”

 id=”available” value=”#{example.availableValues}”

 onchange=”doUpdate(false, true);”>

 <f:selectItems value=”#{example.availableList}”/>

 </h:selectManyListbox>

 ...

 <h:selectManyListbox style=”width:100px; height:120px;”

 id=”chosen” value=”#{example.chosenValues}”

 onchange=”doUpdate(true, false);”>

 <f:selectItems value=”#{example.chosenList}”/>

 </h:selectManyListbox>

</h:panelGrid>

	 As in the Struts implementation, the <h:selectManyList-
box> tags refer to the “availableList,” “availableValues,”
“chosenList,” and “chosenValues” properties of the backing
JavaBean. The interfaces for these properties are identical to
the Struts implementation. Internally the Struts Bean stores
List properties as LabelValueBeans, while the JSF Bean stores
them as SelectItems.
	 Like the Struts implementation, the four buttons in the
middle column are implemented with standard HTML <in-
put> tags. For JSF these have to be enclosed in <f:verbatim>
tags. Other than that, the buttons are almost identical with
the Struts implementation. The only wrinkle is that JSF gen-
erates hierarchical element identifiers. That’s why JavaScript
for JSF often contains identifiers like those with the “form:”
prefix in the code below.

<h:panelGrid columns=”1”>

 <f:verbatim>

 <input type=”button” style=”width:100px;”

 id=”add” onclick=

 “doMove(‘form:available’, ‘form:chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=

 “doMove(‘form:available’, ‘form:chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;”

 id=”remove” onclick=

 “doMove(‘form:chosen’, ‘form:available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=

 “doMove(‘form:chosen’, ‘form:available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 </f:verbatim>

 <h:inputHidden id=”chosenItem”

 value=”#{example.chosenItem}” />

</h:panelGrid>

	 Other than the hierarchical identifiers, the “doMove()”
and “doUpdate()” functions for JSF are identical to those in
the Struts implementation. JavaScript provides client-side
interactivity in JSF just as it does in Struts.
	 A convenience of JavaServer Faces is its handling of the
submit action. In JavaServer Faces, you can define the submit
button to explicitly invoke a method in the form bean:

<h:commandButton action=”#{example.submit}”

 value=”#{bundle.submit}” />

	 The “example:submit” method reads the hidden field
and populates the lists. Because this method is attached to

JDJ.SYS-CON.com14	 August 2006

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
J2EE/.NET applications. Panorama quickly identifies how application, web, and data-
base servers are impacting end-to-end performance. With Panorama, you can pin-
point the source of a problem, so time and money aren't spent in the wrong places.

The most successful organizations in the world rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/pinpoint

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

Feature

the submit button, there’s no need to implement an Action
object.

public String submit()

{

 // Populate the available list from the language list.

 availableList.clear();

 availableList.addAll(languageList);

 // Populate the chosen list from the hidden field.

 chosenList.clear();

 move(availableList,

 chosenItem.split(“\\|”), chosenList);

 ...

 return(“success”);

}

	 There’s not much of a learning curve to JSF. Tags are dif-
ferent, but they usually produce smaller JSPs. Java code is
similar and sometimes requires fewer objects.
	 The strongest advantage of JavaServer Faces is its compo-
nent architecture. If you get the free download of Sun’s Java
Studio Creator, you’ll find it contains a complete Add-and-
Remove component that you can drag-and-drop in your GUI.
Sun’s component includes features such as “Move Up” and
“Move Down” buttons to tweak the order of the chosen items.
We can expect many such useful components to emerge as
JSF development advances.

Conclusion
	 This article has described a standard UI design pattern
for making ordered selections and selections from long
lists. Implementations of this pattern were compared using
Jakarta Struts and JavaServer Faces.
	 JSF provides a natural migration path for projects moving
from Struts. The JSP tags are simplified; the backing bean
code is similar; and if you need JavaScript for interactivity, the
same functions can be used.
	 JSF can be thought of as a simplified, componentized
version of Struts. Its designers have done exactly the type of
work one hopes for in a “second system”: they’ve added use-
ful features and reduced complexity.
	 For any new Web project, JavaServer Faces should be
strongly considered. For existing Struts projects, JSF provides
a smooth migration path.

Resources
•	 Apache Software Foundation. http://struts.apache.org/,

2006.
•	 Steve Aube. A Dual Listbox Selection Manager. http://

www.codeguru.com/Cpp/controls/listbox/article.php/
c4755.

•	 Hans Bergsten. JavaServer Faces. O’Reilly. Sebastopol,
CA. 2004.

•	 Heman Robinson. “Struts and JavaServer Faces: Design
Patterns for List Selection.” Java Developer’s Journal, 11:3,
2006.

•	 Sun MicroSystems, Inc. Java Look and Feel Design
Guidelines: Advanced Topics. Addison-Wesley
Professional. New York. 2002.

•	 Sun MicroSystems, Inc. “JavaServer Pages Standard Tag
Library.” http://java.sun.com/products/jsp/jstl/.

•	 Sun MicroSystems, Inc. http://developers.sun.com/prod-
tech/javatools/jscreator/reference/faqs/technical/web-
forms/js_client_identifier.html.

•	 Sun Microsystems, Inc. Java Studio Creator.
	 http://developers.sun.com/prodtech/javatools/jscre-

ator/.
•	 Jennifer Tidwell. Designing Interfaces. O’Reilly.

Sebastopol, CA. 2005.
•	 World Wide Web Consortium. HTML 4.01 Specification.

http://www.w3.org/TR/html401/interact/forms.html#h-
17.13. 1999.

•	 Weinschenk, Jamar, and Yeo, GUI Design Essentials.
Wiley & Sons. New York. 1997.

“For any new
Web project,
JavaServer
Faces should
be strongly
considered.
For existing
Struts projects,
JSF provides
a smooth
migration
path.”

JDJ.SYS-CON.com16	 August 2006

Feature

Listing 1 – Jakarta Struts JSP
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

<%@ taglib uri=”/WEB-INF/tlds/struts-bean.tld”

 prefix=”bean” %>

<%@ taglib uri=”/WEB-INF/tlds/struts-html.tld”

 prefix=”html” %>

<%@ taglib uri=”/WEB-INF/tlds/struts-logic.tld”

 prefix=”logic” %>

<%@ taglib uri=”/WEB-INF/tlds/c.tld”

 prefix=”c” %>

<%@ taglib uri=”/WEB-INF/tlds/fmt.tld”

 prefix=”fmt” %>

<HTML>

<HEAD>

 <TITLE>Add-and-Remove Pattern</TITLE>

 <link rel=”stylesheet” type=”text/css” href=

 ‘<%= request.getContextPath() + “/stylesheet.css” %>’>

</HEAD>

<BODY BGCOLOR=”white” onload=”doUpdate(false, false);”>

<fmt:setBundle basename=”com.kowaldesign.example.example”/>

<html:form action=”/exampleWrite.do”>

<table border=”0” cellpadding=”0” cellspacing=”5”>

 <%-- Add-and-Remove Pattern --%>

 <tr align=”middle” valign=”center”>

 <td>

 <fmt:message key=”available”/>

 <html:select property=”availableValues”

 multiple=”true” size=”7” style=”width:80px;”

 styleId=”available”

 onchange=”doUpdate(false, true);”>

 <html:optionsCollection property=”availableList”/>

 </html:select>

 </td>

 <td>

 <input type=”button” style=”width:100px;” id=”add”

 onclick=”doMove(‘available’,’chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;” id=”addAll”

 onclick=”doMove(‘available’,’chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;” id=”remove”

 onclick=”doMove(‘chosen’,’available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll”

 onclick=”doMove(‘chosen’,’available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 <html:hidden styleId=”chosenItem”

 property=”chosenItem” />

 </td>

 <td>

 <fmt:message key=”chosen”/>

 <html:select property=”chosenValues”

 multiple=”true” size=”7” style=”width:80px;”

 styleId=”chosen”

 onchange=”doUpdate(true, false);”>

 <html:optionsCollection property=”chosenList”/>

 </html:select>

 </td>

 </tr>

 <%-- Submit button --%>

 <tr align=”middle” valign=”top”>

 <td colspan=”3”>

 <input type=”submit”

 value=”<fmt:message key=’submit’/>” />

 </td>

 </tr>

</table>

</html:form>

<script language=”JavaScript”>

<!--

 /**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

 function doMove(sourceId, destId, all)

 {

 // Move the items between the lists.

 var sourceElem = document.getElementById(sourceId);

 var destElem = document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text = sourceElem.options[i].text;

 newOption.value = sourceElem.options[i].value;

 destElem.options[destElem.length] = newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate(false, false);

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“chosenItem”);

 var chosenList = document.getElementById(“chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

 }

 /**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested to ensure

 * at most one list contains selections.

 * <p>

 * @param offAvailable deselecting available list

 * @param offChosen deselecting chosen list

 */

 function doUpdate(offAvailable, offChosen)

 {

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“available”);

 var chosenList =

 document.getElementById(“chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

 }

// -->

</script>

</BODY>

</HTML>

<<End Listing 1.>>

JDJ.SYS-CON.com18	 August 2006

Listing 2. JavaServer Faces JSP
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

<%@ taglib uri=”/WEB-INF/tlds/c.tld” prefix=”c” %>

<%@ taglib uri=”/WEB-INF/tlds/fmt.tld” prefix=”fmt” %>

<HTML>

<HEAD>

 <TITLE>Add-and-Remove Pattern</TITLE>

 <link rel=”stylesheet” type=”text/css” href=

 ‘<%= request.getContextPath() + “/stylesheet.css” %>’>

</HEAD>

<BODY BGCOLOR=”white” onload=”doUpdate(false, false);”>

<f:loadBundle basename=”com.kowaldesign.example.example”

 var=”bundle”/>

<fmt:setBundle basename=”com.kowaldesign.example.example”/>

<f:view>

 <h:form id=”form”>

 <h:panelGrid columns=”1” rowClasses=”center”>

 <%-- Add-and-Remove Pattern --%>

 <h:panelGrid columns=”3” rowClasses=”center”>

 <h:outputText value=”#{bundle.available}” />

 <h:outputText value=”” />

 <h:outputText value=”#{bundle.chosen}” />

	 <h:selectManyListbox id=”available”

 style=”width:100px; height:120px;”

	 value=”#{example.availableValues}”

 onchange=”doUpdate(false, true);”>

	 <f:selectItems

 value=”#{example.availableList}”/>

	 </h:selectManyListbox>

	 <h:panelGrid columns=”1”>

		 <f:verbatim>

		 <input type=”button” style=”width:100px;”

 id=”add” onclick=”doMove(

 ‘form:available’,’form:chosen’,false);”

		 value=”<fmt:message key=’add’/>” />

		 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=”doMove(

 ‘form:available’,’form:chosen’, true);”

		 value=”<fmt:message key=’addAll’/>” />

		

		 <input type=”button” style=”width:100px;”

 id=”remove” onclick=”doMove(

 ‘form:chosen’,’form:available’,false);”

		 value=”<fmt:message key=’remove’/>” />

		 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=”doMove(

 ‘form:chosen’,’form:available’, true);”

		 value=”<fmt:message key=’removeAll’/>” />

		 </f:verbatim>

	 <h:inputHidden id=”chosenItem”

 value=”#{example.chosenItem}” />

	 </h:panelGrid>

	 <h:selectManyListbox id=”chosen”

 style=”width:100px; height:120px;”

	 value=”#{example.chosenValues}”

 onchange=”doUpdate(true, false);”>

	 <f:selectItems value=”#{example.chosenList}”/>

	 </h:selectManyListbox>

 </h:panelGrid>

 <%-- Submit button --%>

 <h:panelGrid columns=”1”>

 <h:commandButton action=”#{example.submit}”

 value=”#{bundle.submit}” />

 </h:panelGrid>

 </h:panelGrid>

 </h:form>

</f:view>

<script language=”JavaScript”>

<!--

 /**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

 function doMove(sourceId, destId, all)

 {

 // Move the items between the lists.

 var sourceElem = document.getElementById(sourceId);

 var destElem = document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text = sourceElem.options[i].text;

 newOption.value = sourceElem.options[i].value;

 destElem.options[destElem.length] = newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate();

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“form:chosenItem”);

 var chosenList =

 document.getElementById(“form:chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

 }

 /**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested.

 * <p>

 * @param offAvailable deselecting available list

 * @param offChosen deselecting chosen list

 */

 function doUpdate(offAvailable, offChosen)

 {

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“form:available”);

 var chosenList =

 document.getElementById(“form:chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

 }

// -->

</script>

</BODY>

</HTML>

<<End Listing 2.>>

19August 2006JDJ.SYS-CON.com

his article introduces a new
form of analysis for Java EE
applications: a runtime abstract
application model derived
automatically from an applica-

tion server using stored knowledge
of Java EE construction. The model
is used dynamically to do extensive
automatic checks for a range of con-
struction errors that could produce
poor performance or unreliability.
The model also lets server behavior be
dynamically visualized in real-time or
retrospectively.
	 There has been a lot of attention
given lately to the topic of of Model
Driven Architecture (MDA), which
aims to create working systems by gen-
erating source code from successively
transformed high-level component
models. While doubts have been cast
on the real-world robustness of this
idea — and previous code-generation
solutions haven’t been a big success
— there’s no doubt that the possibil-
ity of working with software at a more
abstract level holds a strong appeal for
engineers.
	 Although the inauspicious history
of CASE tools suggests that making a
project dependent on model-driven
code generation could be limiting, the
central tenet of MDA — the ability to
view and analyze our application at
an abstract level — is a powerful and
attractive goal. Even if our application
grew beyond an initial set of pre-
defined patterns and code templates
we’d still like to be able to validate and
understand it based on a design-level
description of its operation.

Derived Model Analysis (DMA)
	 If we don’t have a predefined model,
how are we going to get one? Well, if
you try to describe your application to
someone else you’ll almost certainly

use architecture-level abstractions:
the services it uses; the main busi-
ness and data components and how
these relate. So it would be good if
similar high-level abstractions could
be derived and presented automati-
cally by analyzing and monitoring the
execution of your application. Model
elements would include application
components, the application server
services they use, and the data access,
transaction management, and calling
relationships between them.
	 Once application model elements
were identified they would be up-
dated dynamically during execution.
Monitoring the changing patterns of
inter-relationships in the model would
automatically detect construction-
quality problems by detecting unlikely
relationships, unnecessary and dupli-
cated relationships, and undesirable
model entity states. Instead of trying to
spot problems in the clutter of source
code we could see key abstractions
directly in the model.
	 eoLogic terms this form of indirect
application monitoring Derived Model
Analysis (DMA): tools analyze Java EE
applications both statically and during
server execution to derive an abstract
model that includes both application
components and Java EE services.
Subsequent changes to the model
form a dynamic event sequence that
can be used to (a) track and validate
application execution and (b) visualize
the model. Lower-level application
execution details can be recorded in
the context of the sequence of model
changes.
	 Note that DMA is not a profiling
technique – it doesn’t aim to identify
current code hotspots; instead, it
analyses how services have been con-
structed and are being used. The idea
is to identify places where hotspots or

unreliability may occur under load.
This deeper form of analysis can be
used to find problems before they
manifest themselves and without the
application being loaded during test-
ing. These problems include incorrect
or inefficient transaction grouping,
inefficient database access, unreli-
able sequences of inter-component
communication, and failure to control
service lifecycles correctly. There’s no
need to drive the application to a point
at which it exhibits slowdown, and the
results need little interpretation.

Deriving a DMA Model
	 To generate and validate an abstract
model of an application a tool must
be able to monitor events in the server
and interpret them in light of the
relevant stored knowledge.
	 This includes definitions of the
main abstract entities we’re interested
in (transaction manager, transaction
resources, transactions, EJB con-
tainers, JMS destinations, etc.), the
possible relationships between these
entities, and invalid and valid patterns
of relationships and states. DMA forms
them into an abstract Entity-Relation-
ship-Attribute (ERA) model as the
system executes, with model changes
triggering annotated definitions of
problem states.

Relationship to JMX
	 The model sounds a lot like Java
Management Extensions (JMX)
— which essentially define a form of
abstract model for purposes of manag-
ing and monitoring Java applications,
and it suggests that possibly DMA
could be layered on top of the infor-
mation available from JMX MBeans.
In detail, what characteristics does a
DMA model require?
•	 It must be an accurate and com-

DMA

by Alan West &
Gordon Cruickshank

Detecting J2EE Problems
Before They Happen

T

Derived Model Analysis

Gordon Cruickshank is

co-founder of eoLogic

(http://www.eologic.com),

a software tools company

created to develop innovative

testing and debugging solu-

tions. He was previously de-

velopment manager at Wind

River Systems and Objective

Software Technology, building

C++ debugging and object

visualization tools.

Alan West is CTO of eoLogic

(http://www.eologic.com),

responsible for all product

development. He was

previously a founder of Object

Software Technology Ltd, and

has over 20 years experience

in software tool design and

architecting large software

systems.

JDJ.SYS-CON.com20	 August 2006

plete abstract model of an applica-
tion, linking static (source) and
runtime application components.

•	 It must be able to be updated in
real-time as the server executes
generating meaningful sequential
event flows.

•	 It must support a wide range of
relationship types including appli-
cation-level call relationships.

•	 It must be able to be intimately
combined with knowledge about
valid and potentially invalid model
forms.

•	 It must be possible to relate model-
level information easily back to
application source.

•	 It must be easily filtered to focus on
different aspects of server opera-
tion.

•	 And it must be easily and intuitively
understood.

	 JMX goes some way towards what is
needed: It provides an abstract model
of an application for both its static and
dynamic aspects; it allows easy selec-
tion of MBeans; many MBeans relate
directly to easily understood aspects
of server operation; there’s a notifica-
tion system for attribute changes and
there’s even an MBean relation service.
	 However, for our purposes it also
has some serious limitations. Many of
the relationships we have to monitor
are based on calling sequences and
application component relationships.
Designed primarily for system man-
agement and threshold monitoring,
JMX doesn’t provide the source-level
monitoring and mapping that the
detection and (especially) the explana-
tion of application construction errors
requires. Also, the level of coverage
is generally insufficiently detailed to
provide a coherent execution model
for the purposes of visualization.
And if we want to use the product to
investigate problems requiring the
ability to freeze the server at the point
of problem detection and extract stack
and related data information then JMX
isn’t precise enough.
	 So the approach that we adopted is
to create a more detailed runtime ERA
model specialized for the following
purposes:
•	 Representing sequences of server

operation precisely and clearly
•	 Detecting construction errors

based on component interrelations,
including call sequences and trans-
action membership

•	 Explaining construction errors by
relating model entities and relation-
ships to precise source references

•	 Providing an intuitive visual model
of sequential server operation

•	 Supporting model tracing and play-
back

•	 Supporting integrated debugging

	

This specialized model then provides the
structure for attaching knowledge about
model entity roles and valid and invalid
patterns of model relationships and at-
tributes, together with details on problem
descriptions and suggested fixes.
	 The need for detailed tracking of
calls and object states means that the

 Figure 1 DMA operation by abstraction and selection

 Figure 2 Example order form

 Figure 3 Use case alerts

21August 2006JDJ.SYS-CON.com

DMA

DMA engine moves from the realm
of JMX and more towards an applica-
tion of Aspect-Oriented Program-
ming (AOP), combining the planned
abstraction of JMX with the detailed
and flexible monitoring and interven-
tion of AOP. Having said this, it would

be wasteful not to exploit the JMX
information provided by a server.
Some JMX MBeans serve as important
internal DMA monitoring and access
points, but are augmented with addi-
tional monitoring and updating points
in the server.

DMA Error Detection
	 As shown in Figure 1 DMA abstracts
from the underlying framework and
application objects to a conceptual
ERA model. Queries against this model
then provide the means for problem
recognition.

 Figure 5 Diagram of entities and relationships at the mixed transactions alert

 Figure 4 Entities and relationships in the server view for the mixed transactions alert

JDJ.SYS-CON.com22	 August 2006

DMA

 	 Usually the abstraction stage is pri-
marily one of selection as key objects
are monitored, but it can also require
composition of elements from more
than one underlying object.

DMA Use Case
	 To look at how the abstraction
mechanisms of DMA allow con-
struction problems to be detected

and explained let’s look at it operat-
ing on a sample application. We’ll
aim to show how we can identify a
pattern of application and frame-
work components that indicates
a problem. We’ll then show how
the problem can be visualized and
explained back to the source level
by exploring the model at the point
of detection.

Example Application
	 Figure 2 shows a simple Web-based
order-processing example that accepts
orders and processes them in the fol-
lowing way:
•	 An order invoice is created and

queued to an existing invoice ser-
vice using JMS to create and process
the invoice.

•	 The order details are queued to an

 Figure 6 The instantiation location for the JMS Session

 Figure 7 JMS Session creation source line

JDJ.SYS-CON.com24	 August 2006

 Figure 8

 Figure 9

order processing system using JMS
to process and deliver the order
separately.

	 However there’s a problem: The
invoices don’t arrive at the invoice pro-
cessing application although the order
entries are processed correctly.

Monitoring the Application
	 To monitor the sample application
we’ll run the WebLogic server from our
DMA analyzer called eoSense, which
comprises a server agent and a client.
The agent constructs and checks the
abstract model as WebLogic executes.

When a problem is detected, the agent
signals an alert to the client.

Transaction-Related Alerts
	 Running the example application
results in the initial alerts shown in
Figure 3 being detected (after several
less serious alerts).
 	 Looking at the alerts in more detail,
there was a:
•	 JMS Message sent inside a JTA

Transaction using a non-XA
Connection – A JMS Connection
created from a non-XA Factory was
used to create a JMS session and
sender. The sender was then used

with the context of a JTA transac-
tion. This may indicate that an XA
JMS Connection should have been
used instead.

•	 Mixed Transactions – The JMS send-
er has been used from a JMS Session
marked as transacted, but there’s
already a JTA transaction active on
the current thread.

DMA Visualization
	 When the Mixed Transaction alert is
recorded a diagram of the ERA model
allows the context of the problem to be
understood. In eoSense this is called
the Server View and an image of the

25August 2006JDJ.SYS-CON.com

DMA

server view is shown in Figure 4.
	 We can see that there are two active
transactions, one linked to the Order
Processing Servlet and the other linked
to a JMS Session. We can also see
that the Order Processing Servlet has
communicated with two JMS Senders.
Figure 5 shows diagrammatically the
named key entities and relationships
from Figure 4.
 •	 There are two in-flight transactions

held by the Transaction Manager
•	 There is an “initiated By”

relationship between the
OrderProcessingExample Servlet
and Transaction 1

•	 There is an “Initiated By” relation-
ship between the JMS Session 1 and
Transaction 2

•	 The OrderProcessingExample
Servlet has sent two Messages:
There is a “Has_Called” relationship
to JMS Sender 1, which is attached
to the Order JMS Destination, and
a “Has_Called” Relationship to JMS
Sender 2, which is attached to the
Invoice JMS Destination.

	 Note: This example is not an en-
dorsement of initiating JTA transac-
tions in servlets. That’s another doubt-
ful practice – and one that eoSense can
also detect – but it’s simpler to show
the example this way.

Problem Explanation
	 By examining the alerts, and model
entities and relationships, we can
identify the elements of the problem:
•	 There are two transactions, not one

as expected
•	 One transaction was initiated by

the servlet; the other by the JMS
session. The second transaction is
unexpected.

	 Now we can use the model to map
the problem back down to the source
level. By selecting the JMS Session, as
shown in Figure 6, we can examine the
point at which it was created (source
creation points are available for ap-
plication-level entities):
 	 The displayed source in Figure 7
shows that it’s been created with the
transaction attribute set to true:
 	 If we want both the order and invoice
JMS messages to form part of the
same overriding JTA transaction, the
transaction attribute (the first argu-

ment) should be false. And because the
JMS Session-specified transaction was
unintended there’s no code present
in the application to commit it (as the
presence of the transaction in the eo-
Sense view after order entry processing
confirms). And even if the gross error
of not committing the JMS-initiated
transaction hadn’t happened we would
still have code that incorrectly creates
two transactions, with the possibility of
intermittent damaging inconsistencies.

Mixed Transactions Model
Alert Query
	 The DMA model consists of the dy-
namic set of abstract entities and their
relationships, a small part of which
we’ve already examined. But what
model trigger fired to signal the Mixed
Transactions alert? eoSense defines
query triggers as plug-in script inserts
to its database, but the trigger can be
expressed concisely as:

when relation Transaction_InitiatedBy cre-

ated and relation.to.type == JMSSession and

exists(select Transaction t1 from

Transactions

where relation.from.attribute.thread ==

t1.attribute.thread)

	 Having identified the key transac-
tion and session entities, we can then
navigate to related entities to show the
full set of entities and relationships in
the scope of the problem and relate
these back to source-level statements.
In the example, these are the creators
of the original transaction and the
problematic session.

JDBC Connection Not Closed Alert
	 If we continue, Figure 8 shows the
next alert that appears.
 	 This alert indicates that a JDBC Con-
nection has not been closed before
the methods using it have returned
indicating inefficient use. The problem
connection is indicated, with captured
stacks showing its use without closure,
mapping the problem back to the
source code.

Visualization
	 The image of the Server View in
Figure 9 shows the direct access from
the servlet to the DataSource (itself
a doubtful practice which could be
checked).

Connection not Closed Model Alert
Query
	 This alert requires a model trigger
to dynamically create a second trigger
that then fires to indicate the problem:

when relation DataSource_Returned_

Connection created

create Trigger(return,single) t1 on

findFrame(method.returns(java.sql.

Connection) == false)

when t1

connection.attribute(‘closed’) == false)

	 Note that this rule is aimed at detecting
an unsafe pattern of use. If we just wanted
to detect connection leaks we could track
references but the intention in DMA
checking is to highlight unsafe program
construction patterns (as well as obviously
faulty ones) and so achieve code that’s not
just less wasteful, but more maintainable.

Efficiency
	 Doesn’t visualization and modeling of
this kind impose far too heavy a perfor-
mance penalty? Well, no. The model is
derived from efficient, highly constrained
monitoring in the application server, the
extent of which is dynamically controlled.
The frequency of client updates for visu-
alization can be set to any desired level,
and the model can be examined only in
retrospect, if that is preferred.

Summary
	 We’ve seen an example of Derived
Model Analysis in action, deriving an
entity-relationship model dynamically
from an executing Java EE application,
and using this to detect and, impor-
tantly, explain clearly serious structural
problems that were not exhibiting
any obvious effect and would not be
obvious from the source code or from
tracing application components.
	 eoSense can use DMA to represent
visually almost all Java EE services and
can monitor these independently or in
combination. It can automatically detect
a wide range of serious construction de-
fects, with more detectors being added
as new problem patterns are defined.
It’s clear that, as applications become
increasingly based on standardized
frameworks, automatically identifying
design-level models from application
execution and using those models to
validate the applications becomes a real
and powerful possibility.

JDJ.SYS-CON.com26	 August 2006

I know how to change
 my industry.

I know how to get
 investors on board.

 I can inspire.

 YEAH, THAT’S ME.

 I know people.

 I can lead.

 I need to do this.

I have the next great
 software idea.

Unlock your potential with the help of industry

leaders in Rich Internet Application development.

Discover how everyday we help people just like

you at cynergysystems.com/thatsme.

cynergysystems.com/thatsme

nlike the HTTP protocol there’s no stable default
JMS listener for invoking the Web Services exposed
in Apache Axis 1.x using JMS (Java Message Service)
as the transport protocol – other than the one pro-
vided merely for demo purposes.

	 This article describes a fully working generic JMS listener
that can act as a JMS transport receiver handler for Axis and
allow service clients to uniquely address individual Web
Services in a JMS way and invoke them over JMS.
	 Apache Axis is a popular Java-based Open Source platform
for exposing Web Services. It has native support for handling
invocations into Web Services based on the SOAP (Simple
Object Access Protocol) application protocol. By default, the
Axis server supports HTTP as the protocol for transporting
the SOAP payload and provides an HTTP transport listener to
do the same on its own. The HTTP transport listener accepts
the SOAP requests coming over HTTP and then hands off
the SOAP payload to the Axis engine for application-level
handling of the request (like SOAP parsing, extracting input
parameters, invoking the right service implementation, etc.),
and gets the response SOAP message from the Axis engine
and sends it back to the caller in the HTTP response.
	 For those enterprise applications where reliable invocation
and guaranteed delivery of invocation messages are impor-
tant, JMS, rather than HTTP, is the preferred protocol for
transporting SOAP messages. JMS implementation provid-
ers, with built-in reliability features like re-try mechanisms,
ensure that messages reach the message consumer applica-
tion whatever the case. JMS is also the best way to handle
asynchronous invocations of Web Services.
	 However, what Axis 1.x provides for JMS transport protocol
use is only a basic demo listener that’s not really meant for
production-level use. This listener is also not easy to use and
isn’t flexible enough to be able to specify and handle unique
endpoint addresses for each individual Web Service exposed.
So, for client applications that need to invoke the Axis Web
Services over JMS a flexible, stable, and easy-to-use JMS
transport listener and handler is required.
	 This article implements a generic JMS listener and
describes how it is to be used along with the Axis server. For

purposes of this paper, I’ve considered the Open Source
frameworks Apache Axis 1.2 and JMS provider OpenJMS
0.7.6.1. However, this should be largely applicable to the
higher versions of Axis in the 1.x series too.

The Addressing Model
	 In an Axis server, each Web Service is described in the
server-config.wsdd file and the service name mentioned
there becomes part of the concrete HTTP URL (concrete port
binding) for accessing the Web Service. For example, to ac-
cess a “StockQuoteService” defined in the server-config.wsdd
of the Axis server running in host www.samplehost.com, the
default HTTP URL would be http://www.samplehost.com/
axis/Services/StockQuoteService. Each Web Service similarly
defined in server-config.wsdd will have a unique access
URL like the one above with the first portion of the URL, i.e.,
http://www.samplehost.com/axis/Services/, remaining the
same. In this sense, each Web Service will be addressed with a
unique HTTP destination.
	 We can choose to follow a similar model for exposing the
same Web Services over the JMS transport protocol. In other
words, each service endpoint will be available at a unique
JMS destination (aka a queue). So for each Web Service
defined in the Axis server, we define a separate queue in
the JMS provider – in our case OpenJMS – and update the
openjms.xml file in the config folder of the OpenJMS home
for defining one queue for each Axis-deployed Web Service
that’s meant to be accessible over JMS. In this article, the ap-
proach taken is to use the service name defined in Axis itself
as the queue name (similar to the HTTP concrete binding
mentioned above). For example, for the sample Web Service
called “MessageService” provided in the Axis distribution,
we can define a queue with the same name putting the entry
<AdministeredQueue name=”MessageService”/> in openjms.
xml.
	 This addressing model applies uniformly to both RPC-style
and message-style Axis services. It’s more straightforward and
standards-compatible with the WSDL specs. The JMS desti-
nation for each Web Service becomes the address in the con-
crete port binding for the service and the Web Service clients

U

A Generic JMS Listener
for Apache Axis 1.x
A needed transport-level handler by Parameswaran Seshan

Parameswaran Seshan is

a technical architect with

Software Engineering and

Technology Labs, the R&D

division of Infosys Tech-

nologies Ltd. in Bangalore,

India. His areas of expertise

include Business Process

Management systems, Web

Services, and Java.

JDJ.SYS-CON.com28	 August 2006

can directly use this concrete JMS destination mentioned in
the WSDL file for invoking the service.
	 This is a better model than the non-standard way of speci-
fying the Axis Web Service name as the prefix in the request
SOAP message body’s first XML element. For example, for the
invocation of the method “getQuote” in the Axis sample Web
Service named “urn:xmltoday-delayed-quotes,” which is an
RPC-style service, the basic JMS listener provided in the Axis
distribution expects the client to create the SOAP body ele-
ment <urn:xmltoday-delayed-quotes:getQuote> containing
the service name as the XML prefix.
	 The client does this through code similar to call.
setOperationName(new QName(“urn:xmltoday-delayed-
quotes:getQuote”, “getQuote”)). This fact doesn’t appear in
the WSDL definition of the service hence interoperability
with different external service clients could become an
issue. It’s best to stick to the details given in the WSDL file
and with the new service endpoint addressing scheme
introduced here, all the clients can, in a standard way, just
keep the first SOAP body element as <getQuote> following
the WSDL details alone, thereby improving interoperabil-
ity.

The Role of JMS Listener
	 The JMS listener is a server-side component that needs to
listen to incoming JMS messages containing SOAP messages
at the defined JMS queue. These SOAP messages are request
messages coming from service clients that are trying to
invoke the Web Service(s). Once the JMS message is received,
the onMessage() method in the listener needs to get the mes-
sage content which is the SOAP XML payload, and invoke the
Axis engine supplying the SOAP XML message and also speci-
fying to Axis the name of Web Service that’s being invoked.
This handing over of the SOAP message to Axis server is the
key responsibility of this listener.
	 Then, if the client expects a response back from the Web
Service (such as in a pseudo-synchronous call), the JMS
listener needs to get the SOAP response message from the
Web Service and put it as the payload in a new JMS message
and send this message to the JMS queue destination the cli-
ent is waiting on. This JMS listener can be used for receiving
requests of both RPC-style and document-style Web Services
invocations since it doesn’t read and interpret the SOAP mes-
sage at all; it just sticks to its role as a transport-level handler.

Implementing the Listener
	 Now we’ll look at the implementation of the JMS listener.
To realize the addressing model described above, the ap-
proach is to have one instance of the listener class Gener-
icJMSSOAPListenerForAxis for each Axis Web Service. This
class that implements javax.jms.MessageListener is a generic
listener for JMS Web Service requests. I’ll explain the salient
parts of this class in this section and the next. The full source
code of this and other classes discussed here is available for
download in the resources section.
	 First the constructor of this class needs to register with
OpenJMS for receiving messages in the queue defined for this
Web Service. The constructor takes the Web Service name
as an input argument. A static initialization block is used to
instantiate the Axis engine and this gets executed when the

Java Virtual Machine (JVM) loads the GenericJMSSOAPLis-
tenerForAxis. All the instances of this class have to use the
same Axis engine instance.

...

public GenericJMSSOAPListenerForAxis(String webserviceName)

{

	...

	this.webserviceName = webserviceName;

	...

}

	 AxisJMSListenersStarter class’s main method starts the
listeners by reading the XML file “jmswebsvcs.xml” that con-
tains the list of Axis Web Services, creating and starting one
instance of GenericJMSSOAPListenerForAxis for each service
in the list by passing the name of the Web Service as an argu-
ment to the constructor. In effect this dynamically creates the
concrete service endpoint destinations for the JMS protocol,
since each Web Service now gets a unique concrete address.

public static void main(String[] args)

{

	// Read the JMS Web Services names from the xml file.

	...

	org.w3c.dom.Document servicesListDoc = db.parse(inFileFullPath);

	org.w3c.dom.NodeList servicesList = servicesListDoc.getDocumen-

tElement().getElementsByTagName(“service”);

	

	for (int k = 0; k < servicesList.getLength(); k++)

	{

		 String webSvcName = ((org.w3c.dom.Element) servicesList.

item(k)).getFirstChild().getNodeValue();

		 new GenericJMSSOAPListenerForAxis(webSvcName);

	}

	...

	 Now let’s look at the message-handling logic in the Gener-
icJMSSOAPListenerForAxis that’s instantiated for a particular
Web Service, say, “MessageService.” Its onMessage() method
is called once the message arrives in the queue named “Mes-
sageService.” After creating the Axis MessageContext for the
message the onMessage method sets the serviceHandler field
of the MessageContext to tell Axis that the Web Service being
invoked is “MessageService” and that for executing service-
specific functionality, the service implementation class, as
defined in the server-config.wsdd, for service name “Messag-
eService” should be invoked.

public void onMessage(javax.jms.Message inMsg)

{

	...

	axisMsgCtxt.setRequestMessage(axisSoapMessage);

	// Set the target Web Service in the Axis message context to

indicate that this message should

	// go to the Axis webservice named <webserviceName> for which

this queue is receiving messages.

	axisMsgCtxt.setTargetService(webserviceName);

...

}

29August 2006JDJ.SYS-CON.com

Feature

	 This method then sends the response SOAP message to the
JMS client. However, at this point no correlation id is used.
For simplicity’s sake it’s assumed here that the client, after
sending the message, waits on a receive queue expecting to
get a response message for the Web Service invocation it just
made. This listener class can easily be extended to refer to
and use a client-specified JMS correlation id to send a cor-
related response to the client.

Invoker-side implementation
	 Now let’s look at some key aspects on the client side of
the invocation. The classes written for the client side are
JMSTestClientRPC, MyJMSTransportForAxis, JMSTestClient-
MessageStyle – which are client classes that invoke RPC- and
message-style services respectively, for example they respec-
tively invoke the services “urn:xmltoday-delayed-quotes”
of samples.stock and “MessageService” of samples.message
packages, the samples available in the Axis distribution – and
MyJMSSender – which are the JMS transport handlers for the
client side. JMSTestClientRPC makes a call using the Axis Call
object to a given RPC Web Service using JMS as the transport.
Hence it specifies the unique target endpoint JMS address
defined for that particular Web Service, for example, here
“urn:xmltoday-delayed-quotes.” Please note that the RPC
operation name is set with just the method name as given
in the WSDL file and no service name prefix. The Axis Call
object has to be told that a JMS transport handler needs to
be used for this invocation. This handler class is instantiated
and attached to the call here. If this value isn’t set, Axis will
use the HTTP transport handler by default. For both RPC-
and message-style invocation, the same MyJMSTransport-
ForAxis and MyJMSSender classes are used and connected
via an entry made in the client-config.wsdd file available in
the client classpath. MyJMSTransportForAxis class helps Axis
locate this entry in the client-config.wsdd. MyJMSSender’s
job is to actually send the SOAP message as a JMS message to
the Web Service queue destination specified here and get the
response from the response queue.

...String webSvcJMSDestination = “urn:xmltoday-delayed-quotes”;

axisCall.setProperty(org.apache.axis.transport.jms.JMSConstants.

DESTINATION, webSvcJMSDestination);

axisCall.setOperationName(“getQuote”);

...org.apache.axis.client.Transport transport = new

MyJMSTransportForAxis();

axisCall.setTransport(transport);

...

Running the Listeners
	 Install OpenJMS and Axis. Unzip the download.zip into a
windows folder named, say, A. Modify the setclasspath.bat
to give the correct value for Axis Home and openjms home.
Put the server-config.wsdd in your Axis installation’s (the axis
zone of your web server’s webapp) WEB-INF folder if there is
none already. If you already have this file then copy the two
service element entries in full to the already existing server-
config.wsdd. Define three queues in openjms.xml, i.e., one
for each Web Service given in jmswebsvcs.xml and one for
“replyq,” which is the reply queue used by the client. Change

the GenericJMSSOAPListenerForAxis code line at the top to
specify the full path of your Axis installation’s server-config.
wsdd file. Compile the source code to create .class files. Put
the .class files in folder A with the right package structure.
Now start openjms. Go to folder A in the DOS command
prompt. Run setclasspath.bat. Then start the JMS listeners
using the command java jms.AxisJMSListenersStarter.
	 Now, to run the test client, open another command
prompt window. Go to folder A. Run setclasspath.bat. Use the
command java invoker.jms.JMSTestClientRPC to run the JMS
RPC client. Then use the command java invoker.jms.JMST-
estClientMessageStyle to run the JMS message service client.
Make sure that folder A contains the client-config.wsdd and
that folder A is first in the class path order.

Summary
	 This article has introduced a working JMS listener for use
with Apache Axis 1.x and has shown how clients can uniquely
address Axis Web Services for invocation over JMS and how
they invoke them over JMS using a combination of this lis-
tener and custom-written JMS transport handlers.
	 The source code for this solution can be downloaded from
the online version of this article at http://java.sys-con.com.

Resources
•	 Axis: http://ws.apache.org/axis/java/index.html
•	 Openjms: http://openjms.sourceforge.net/
•	 Web Services Description Language (WSDL) 1.1 - March

15, 2001 http://www.w3.org/TR/2001/NOTE-wsdl-
20010315

•	 JMS: http://java.sun.com/products/jms/
•	 Some articles on JMS with Axis:

-	 “Programming JMS Applications using Axis” (IBM
developerworks) http://www-128.ibm.com/devel-
operworks/webservices/library/ws-jms/

-	 “Axis meets MOM” (javaworld.com) http://www.java-
world.com/javaworld/jw-02-2006/jw-0220-axis.html

“Apache Axis is a
popular Java-based
Open Source
platform for
exposing
Web Services”

JDJ.SYS-CON.com30	 August 2006

i: www.backbase.com t: (866) 800-8996 e: sales-us@backbase.com
© Backbase BV - all rights reserved. BACKBASE is a trademark of Backbase BV.

AJAX for Java

Backbase offers a comprehensive AJAX
Development Framework for building Rich Internet
Applications that have the same richness and
productivity as desktop applications.

The Backbase AJAX Java Edition:

is based on JavaServer Faces (JSF)
runs in all major Application Servers
supports development, debugging and deployment in Eclipse
embraces web standards (HTML, CSS, XML, XSLT)

Download a 30-day Trial at www.backbase.com/jsf

•
•
•
•

ervice Data Objects (SDOs)
have become a foundation
technology for Service Oriented
Architecture (SOA). Recently,

BEA, IBM, Oracle, SAP, Iona, Siebel,
and Sybase announced their support
for an SOA-enabling framework speci-
fication named Service Component
Architecture (SCA). SD O provides the
primary data representation in this
framework.
	 Although not addressed by the cur-
rent SDO or SCA specifications, there’s
a definite need for a generic data
access service that operates in terms
of SDOs. The alternative to this service
would be the tedious and error-prone
development of a custom mapping
between the back-end data represen-
tation and Service Data Objects.
	 The Relational Database Data Ac-
cess Service (RDB DAS) obviates the
need for this custom development by
providing a robust data access utility
built around SDO. Because of its tight
integration with SDO, the RDB DAS is
also a perfect solution for data access
in an SCA-based application.
	 By employing the RDB DAS,
applications avoid the details and
complications of working directly
with a relational database and also the
complex transformation between rela-
tional rows/columns and Data Object
types/properties.

Background
	 Since the release of the specifica-
tion in late 2003, SDO has proven
itself a flexible and robust technology
for data representation. Its inherent
support for disconnected operations
and heterogeneous data sources of-
fers strong support for the needs of
modern software architectures. For
these reasons, SDO has found its way

into several commercial products
from major vendors and these same
characteristics have led to its inclu-
sion in SCA as a foundation technol-
ogy.
	 SDO provides the general case
mechanism for moving data around
an SCA-enabled application. However,
the reality is that most of this data
must originate in some database at
one edge of the application and be
stored in some database at another
edge. Unfortunately, database access
isn’t currently either SDO or SCA. (An
early version SDO Data Access Service
specification is in progress.)
	 This leaves the developer with a
serious undertaking since there’s a
fundamental mismatch between the
objects that an application works with
and the tables and rows of a relational
database that provide the persistent
store for the object’s state (see http://
en.wikipedia.org/wiki/object-rela-
tional_impedance_mismatch).
	 For example, let’s consider a simple
query against a relational database for
customers in a certain age range and
their related orders.
	 An SDO-enabled application could
most easily and naturally work with a
normalized graph of Data Objects rep-
resenting the query. Figure 1 illustrates
this graph of connected Data Objects.
	 This in-memory graph of data ob-
jects brings to bear all of the capabili-
ties of SDO.
•	 It’s a disconnected representation of

the queried data
•	 It provides simple traversal between

related elements
•	 It tracks all changes from its original

form via the SDO change summary
•	 It contains no redundant informa-

tion
•	 It’s easily serialized to XML

	 But unfortunately the relational
database returns a tabular representa-
tion of the query result complete with
redundant customer information as
shown in Figure 2.
	 The transformation required to
convert from tabular format to a graph
of interconnected data objects is com-
plicated and the reverse (transforming
graph changes to a sequence of SQL
inserts/updates and deletes) is even
more so.
	 Because of the difficulties inherent
in the transformation between the
database and the application object
space, an application development
project can easily spend a third of its
development resources on functions
related to moving object state in and
out of the database.
	 Business application developers
shouldn’t be burdened with this task
and should instead be allowed to focus
on business functionality.

Solution
	 The RDB DAS offers a solution to
the problems mentioned above by
providing two major capabilities. The
RDB DAS can:
1.	Execute SQL queries and return

results as a graph of Data Objects
2.	Reflect changes made to a graph of

Data Objects back to the database
	
	 Figure 3 illustrates these two capa-
bilities in a typical client interaction.
The client starts by reading a graph
of data specified by some query. The
client then makes modifications to the
graph, possibly by adding elements,
and then requests the DAS to push the
changes back to the database.
	 The DAS provides an intuitive in-
terface and is designed so that simple
tasks are simple to complete while

SDO

by Kevin Williams
 & Brent Daniel

Data Access
Service

S

How to access relational data in
terms of Service Data Objects

Kevin Williams is a soft-

ware developer with IBM

and is leading IBM’s

participation in the DAS

subproject of the Apache

Tuscany incubator.

Brent Daniel is a software

developer working on

SDO related technologies

for IBM. He is a major

contributor to the DAS

subproject of the Apache

Tuscany incubator.

JDJ.SYS-CON.com32	 August 2006

more complicated tasks are just a little
less simple.
	 The application interface to the
DAS is based on the familiar Com-
mand Pattern and interaction with the
DAS consists of acquiring command
instances and executing them (see De-
sign Patterns by Erich Gamma, et al).
The following example demonstrates
the simplest possible read of data.

Command read =

 Command.FACTORY.createCommand(“select

* from CUSTOMER where ID = 10021”);	

read.setConnection(getConnection());

DataObject root = read.executeQuery();

	 In this case the command is created
programmatically from a Command
factory and the only input necessary is
the SQL SELECT statement. Executing
the read command returns the root of
the resulting data graph and data can
be extracted from the graph using the
SDO dynamic API.

String lastName = root.	

	 getString(“CUSTOMER[1]/LASTNAME”);

	 Pushing changes back to the
database can be equally straightfor-
ward. Continuing with this example
we can modify the customer object
and then direct the DAS to send
the modifications to the database.
This line uses the SDO dynamic
API to change the last name of the
retrieved customer.

root.setString (“CUSTOMER[1]/LASTNAME”,

“Williams”);

	 Now that we have a modified graph,
we can synchronize the changes with
the database by passing the data graph
to an “apply changes command” and
asking it to execute.

ApplyChangesCommand apply = Command.

FACTORY.createApplyChangesCommand();

apply.setConnection(getConnection());

apply.execute(root);

	 As you may have noticed, the read
and write examples each required
three lines of code (except the code to
get the connection object). So those
of you familiar with O/R frameworks
might be asking yourself a few ques-
tions. What is going on here? Where
did you define all the configura-
tion data? I didn’t see a deployment

descriptor? Where is the object-
relational mapping information?
Where are the static domain classes
like Customer? The answers to these
questions are based on two signifi-
cant SDO capabilities and one design
philosophy:
•	 Dynamic SDO
•	 SDO Change History
•	 DAS use of convention

Dynamic SDO
	 The reason you don’t see a Cus-
tomer interface or class used in this
example is because the DAS can work
with dynamic SDO data objects. This is
a very powerful and often overlooked
SDO capability.
	 Many applications today use the
Transfer Object(TO) pattern to move
data around tiers within an applica-
tion (see Core J2EE Patterns by Deepak
Alur, et al). Since these TOs typically
have no behavior, there’s little justifica-
tion for Java interfaces and classes to

implement the TO. These artifacts just
represent more code to write, main-
tain, and manage.
	 One argument for TOs as Java inter-
faces/classes is the potentially cleaner
API:

Static API	

customer.setLastName(“Williams”)		

Dynamic API

customer.setString(“lastName”, “Williams”)

	 However, the SDO dynamic API
is straightforward and can even be
simpler to read than a static equiva-
lent. For example, we can use the SDO
XPath capability to access properties
like this:

amount = customer.getFloat(“orders[17]/

price”);

	 The equivalent, with normal static
Java APIs, would look something like
this:

amount = ((Order)customer.getOrders().

get(17)).getPrice();

	 The dynamic API can also be use-
ful in applications where the data
model is likely to change often dur-
ing development. It lets developers
use the full breadth of Data Object
function without having to generate
a new static model (Java classes and
interfaces) every time a change is
made.

SDO Change History
	 The change history feature of SDO
data graphs is another reason that
SDO data objects can be thought of
as transfer objects on steroids. Not

 Figure 1 DMA operation by abstraction and selection

 Figure 2 DMA operation by abstraction and selection

33August 2006JDJ.SYS-CON.com

SDO

only do data objects provide a snappy
dynamic API and XML serialization,
SDO data objects also remember any
changes that have been made to them.
	 The change history capability means
that SDO data objects aren’t dependent
on a container or some persistence
manager to track their state. In fact,
since the change history is serialized
along with the associated data objects,
a graph of SDO data objects can flow
through different tiers of a distrib-
uted application remembering all the
changes that may occur along the way.
Later, when it’s time to reflect those
changes back to the database, the DAS
can process the change history and
build the set of create/update/delete
commands needed to flush the accu-
mulated changes.
	 The Change History tracks changes
made to all data object properties in-
cluding fields and relationships. Using
this information, the DAS can handle
the complex task of reflecting object
graph changes back to the database
without exposing this complexity to
users. The DAS translates object prop-
erty changes into database column up-
dates and object relationship changes
into database foreign key updates.

Use of Convention over
Configuration
	 The DAS makes use of convention to
simplify the programming model. For
instance, in the simple read example
above we have this statement to access
the last name of a customer:

String lastName = root.

getString(“CUSTOMER[1]/LASTNAME”);

	 Notice the path name: “CUSTOM-
ER[1]/LASTNAME”. This suggests that
there is an SDO Type named CUSTOM-
ER with a property named LASTNAME.

If you remember, the command used
to read this data was created like this:

Command read =

 Command.FACTORY.createCommand(“select *

from CUSTOMER where ID = 10021”);	

	 The RDB DAS, by convention, creates
an SDO Type for each database table
represented in the query result. In
addition, it creates a property for each
table column represented in the query
result. In the absence of any additional
configuration data, the names of these
Types and Properties will exactly match
the names of the database Tables and
Columns. So given the SELECT state-
ment above and the knowledge that the
CUSTOMER table has a column named
LASTNAME, we can assume that the
data graph returned will be populated
with instances of Type CUSTOMER
that have a property LASTNAME. This
capability is made possible by using the
metadata associated with the ResultSet
returned from the query execution.
	 If the application developer wants
the names of Types and Properties to
vary from the names of the Tables and
Columns then he or she can override
this convention with a bit of configura-
tion. We’ll get into the details of provid-
ing configuration to the DAS a little
later.
	 Another bit of convention that this
example demonstrates is exploited
when flushing graph changes to the
database:

ApplyChangesCommand apply = Command.

FACTORY.createApplyChangesCommand();

apply.setConnection(getConnection());

apply.execute(root);

	 In the absence of instruction
(configuration) to do otherwise, the

DAS will scan the change history and
generate the create/update/delete
(CUD) statements necessary to flush
the changes to the database. Since
we just changed a single property of a
single data object, the change history
processing produces a single state-
ment to be executed:

update CUSTOMER set LASTNAME = ‘Williams’

where ID = 10021

	 There are a couple of things we’d
like to point out here. The first one
has nothing to do with convention but
it’s very cool. What has been gener-
ated here is a “partial update.” That
is, rather than generating a complete
update statement that covers every
column in the table, the statement
only updates columns that relate to
changed data object properties (i.e.,
just the last name).
	 Partial updates may not be the
right way to go for some applications
so CUD generation can be overridden
with user-supplied CUD statements.
However, partial update is a good fit
for many applications and with it you
can avoid a great deal of configura-
tion or additional programming. Not
only that, partial updates provide a
performance boost for updates to
tables with very wide rows and are
also useful for avoiding database trig-
gers.
	 The other point we want to make
has to do with the “where” clause
(“where ID =”) of the generated update
statement. Since we mean to update
the specific table row that’s associated
with the modified data object, we need
to qualify the update statement with a
unique row identifier. So this is where
another piece of convention is used. If
the DAS isn’t provided with configura-
tion that defines a unique identifier for
the data object Type then the DAS will
look for one. There’s no magic here; if
there’s a property named ID then the
DAS will assume it’s unique and use it
in the “where” clause.
	 We’ve provided a description of the
convention currently employed by the
DAS. But there’s more on the way. We’re
currently looking to add more capabil-
ity based on conventions for gener-
ated columns, optimistic concurrency
control, and relationship definition.

 Figure 3 DMA operation by abstraction and selection

JDJ.SYS-CON.com34	 August 2006

SDO

	 The use of convention isn’t revolu-
tionary or even new, but it is gain-
ing renewed respect. This may be a
reaction to the configuration-heavy
frameworks we’ve been using in recent
years. Notably, Ruby on Rails, Maven,
JUnit, Wiki and many other “agile”
frameworks make considerable use
of convention over configuration. It’s
amazing what can be done easily, and
how much coding and configuration
can be avoided with these tools by
adhering to simple conventions.
	 We’ve explained how the DAS lever-
ages the capabilities of SDO and makes
use of convention to provide a progres-
sive programming model. Now we’ll
walk through a complete example that
demonstrates a few more RDB DAS
capabilities.

A Complete Example (CompanyWeb)
	 In this example we’ll display the
steps involved in writing a simple
application to work with companies
and their related departments. First we
need to introduce a new DAS con-
cept; the DAS Configuration model.
Although we’re adding more options
for leveraging conventions, there are
still capabilities in the DAS that require
configuration such as relationship
definitions and database-generated
IDs.
	 The DAS Configuration can be built
up programmatically or loaded via an
XML file. In this example we’ll use the
XML file approach.
	 We’ll begin by accessing data from
the Company table, defined as follows:

COMPANY:

ID 	NAME

We start by creating an XML file and
add descriptive information for the
database tables and columns. The
snippet of XML below tells the DAS
that the COMPANY table has a primary
key column named ID that is auto-
generated by the database:

<Table name=”COMPANY”>

 <Column name=”ID” primaryKey=”true”

generated=”true”/>

 </Table>

Notice that we do not define the NAME
column. There’s nothing special about
this column so we’ll just take the con-

ventional behavior offered by the DAS.
	 In the earlier examples we had the
client pass a connection instance to
the DAS for use during execution. An
alternative is to define connection
properties in the Config and have the
DAS manage the connection for us.
Here we choose to use a DataSource
and provide the JNDI name:

<ConnectionProperties dataSource=”java:

comp/env/jdbc/dastest”/>

Finally, we’ll define a Command that
the DAS will use to access the data. The
following command will retrieve all
companies from the database:

 <Command name=”all companies” SQL=”select

* from COMPANY” kind=”Select”/>

	 Now we can write an application
to access the data and create a class
called CompanyClient to handle in-
teraction with the DAS. However, first
we’ll introduce a new DAS concept: the
CommandGroup.
	 A CommandGroup is a logical
grouping of commands and associ-
ated configuration data that serves two
main purposes. Applications will often
define commands that require the
same configuration information and
a CommandGroup binds the defined
commands and the provided configu-
ration data. For example, commands
in the same CommandGroup will
share the same connection properties
and relationship definitions.
	 Secondly, a CommandGroup is
initialized with Commands that it pro-
vides by name. Since the client retrieves
commands by name and then executes
them, the SQL-specific configuration
can be contained in the group and
isolated from the application. In theory,
the same application could switch to
using some other data store technol-
ogy by changing the way the Config is
initialized. For example, a Config could
be initialized to use static SQL or even a
non-relational back-end.
	 Since our application will use com-
mands that share configuration, we’ll use
a CommandGroup and create one Com-
mandGroup instance in CompanyClient
and initialize it with our XML file.

private CommandGroup commandGroup =

 CommandGroup.FACTORY.createCommand

Group(getConfig(“CompanyConfig.xml”));

private InputStream getConfig(String file-

Name) {

 return getClass().getClassLoad-

er().getResourceAsStream(fileName);

 }

Now we’ll create a method to return a
List of Company DataObjects:

 public List getCompanies() { 	

 Command read = commandGroup.

getCommand(“all companies”);

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY”);

 }

At this point, we have an application
capable of returning a list of all compa-
nies in the database. Now let’s add in
another database table, Department:

DEPARTMENT:

ID	NAME	LOCATION	 NUMBER	 COMPANYID

The Department table is also using a
primary key named “ID” that is auto-gen-
erated by the database, so its table defini-
tion will be similar to that of Company:

<Table name=”DEPARTMENT”>

	<Column name=”ID” primaryKey=”true”

generated=”true”/>

</Table>

	 We have to define the relationship
between Company and Department so
that the DAS can construct a dynamic
SDO model with a relationship be-
tween the two and correctly maintain
those relationships in the database.
The following XML snippet names the
relationship, associates the keys, and
specifies the cardinality:

<Relationship name=”departments”

 primaryKeyTable=”COMPANY”

 foreignKeyTable=”DEPARTMENT”

many=”true”>

 <KeyPair primaryKeyColumn=”ID” foreignKe

yColumn=”COMPANYID”/>

</Relationship>

	 Now we can add a command to
return all companies and departments:

<Command

JDJ.SYS-CON.com36	 August 2006

 name=”all companies and departments”

 SQL=”select * from COMPANY left outer

join DEPARTMENT on COMPANY.ID =

 DEPARTMENT.COMPANYID”

 kind=”Select”/>

	 Next we add a method to Compa-
nyClient to access and execute this
command. This method returns a list
of Company data objects, but since
the command employs a join with
Departments, each Company will have
its related Department data objects
associated with it.

 public final List getCompaniesWithDepart-

ments() {

 Command read = commandGroup.

getCommand(“all companies and depart-

ments”);

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY”);

 }

	 Next we’ll add the ability to retrieve
a single company and all its depart-
ments. The configuration file is up-
dated with this command definition:
	
<Command name=”all departments for company”

 SQL=”select * from COMPANY left join

DEPARTMENT on COMPANY.ID =

 DEPARTMENT.COMPANYID where COMPANY.ID

= :ID” kind=”Select”/>

	 Note that we have defined a named
parameter “:ID” in the SQL query. The
CompanyClient uses the code below to
access this command:

public final List getDepartmentsForCompany

(int id) {

 Command read = commandGroup.

getCommand(“all departments for company”);

 read.setParameterValue(“ID”, new

Integer(id));

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY[1]\

departments”);

 }

	 Now we’ll add a write capability to
CompanyClient. Since we’ll let the DAS
generate the CUD statements, no ad-
ditions are necessary to the configura-
tion file.

public final void addDepartmentToFirstCom-

pany() {

 Command read = commandGroup.

getCommand(“all companies and depart-

ments”);

 DataObject root = read.execute-

Query();

 DataObject firstCustomer = root.

getDataObject(“COMPANY[1]”);

 DataObject newDepartment = root.

createDataObject(“DEPARTMENT”);

 newDepartment.setString(“NAME”,

“Default Name”);

 firstCustomer.

getList(“departments”).add(newDepartment);

 ApplyChangesCommand apply = com-

mandGroup.getApplyChangesCommand();

 apply.execute(root);

 }

	 A complete example based on this
company and department scenario,
including a Web application used to
access the CompanyClient, is avail-
able at the Apache Tuscany incubator
project. The readme is available at
http://incubator.apache.org/tuscany/
samples/java/samples/das/company-
web/readme.htm.
	 The complete source is here: http://
svn.apache.org/repos/asf/incubator/
tuscany/java/samples/das/company-
web/
	 In the space of this article we’ve
shown some of the main capabilities
of the Relational Database Data Access
Service being developed at Apache’s
Tuscany incubator project. Here are
other important supported capabili-
ties:
•	 Statically typed (generated) SDO

DataObjects
•	 Optimistic concurrency control
•	 Stored procedures
•	 External transaction participation
•	 Write-operation ordering (database

constraints)
•	 Simple name mapping (Table/

Column -> SDO Type/property)
•	 Column-type conversions
•	 Paging

Business Benefits
	 Object-to-Relational Data Access
– The RDB DAS provides a capable
and flexible data access mecha-
nism to applications integrating

SDO technology. By employing the
DAS, developers avoid developing
a custom data access framework,
a task that’s tedious, complex, and
error-prone.
	 Integrated with SDO – The Transfer
Object pattern is often used by appli-
cations to move persistent state from
one part of the application archi-
tecture to another. This is especially
true if the data movement requires
serialization. Such an application can
employ some object-to-relational
technology (JDO, EJB, Entity beans,
etc.) to retrieve the data from a back-
end data store and then copy the data
to the DTO for transfer around the
application.
	 The creation of separate TOs isn’t
necessary for an SDO-integrated ap-
plication using the DAS because the
SDOs themselves are easily serialized
to XML. As a bonus to the TO pat-
tern, the SDOs “remember” changes
made to them and this memory is
preserved through serialization/de-
serialization.

Conclusion
	 The RDB DAS and SDO provide a
simple and powerful way to access
and work with relational data. The
RDB DAS lets developers work with
SDO without building custom data
access solutions since the DAS works
in terms of SDOs. It simplifies data
access by hiding many of its com-
plexities while still letting developers
harness more powerful features in
complex scenarios.
	 Because the RDB DAS integrates
SDO technology, it’s a natural fit for
data access in the SCA framework.
In fact, an RDB DAS implementation
is evolving as part of the “Tuscany”
SOA Apache incubator project
along with implementations of SCA
and SDO. The DAS is also on the
roadmap for the upcoming SDO 3.0
specification.
	 The examples and code included in
this article can be had from the Apache
Software Foundation and licensed ac-
cording to the terms of the 2.0 Apache
License.
	 More information about the RDB
DAS and the implementation under
development can be found at http://
incubator.apache.org/projects/tus-
cany.

37August 2006JDJ.SYS-CON.com

he client/server development model prevalent in
the mid-1990’s resulted in extremely easy-to-build
rich GUI applications that interacted directly with
a relational database. 4GL tools such as Visual
Basic and PowerBuilder let even junior developers

visually compose both the presentation and most of the
backend data binding. While this made for impressive
Rapid Application Development (RAD) productivity, the
client/server architecture was severely challenged when
dealing with real-time environments where the data
changes rapidly and applications require visibility to the
correct data at all times. As a result, client applications
were forced to poll the database continuously to check
for changes.

	 The same is true in today’s browser-based or Java Swing-
based multi-tier applications, where the user is forced to
issue a screen refresh to view the latest state. Real-time
applications such as a trader desktop where the screens are
continuously refreshed are still sophisticated proprietary ap-
plications that require specialized application design to push
events from backend servers to the GUI clients. Such applica-
tions result in hundreds or even thousands of views like this:
Maintain a continuous view of all Intel and Dell orders placed
today and notify me when AMD moves up or down by 5%.
	 However, today a new “push-based” architecture enables
data changes to be monitored continuously in a backend data
management system and changes continuously pushed to
client applications, maintaining a real-time view at all times.

The promise of a robust new
development model

by Gideon Low & Jags Ramnarayan

T

JDJ.SYS-CON.com38	 August 2006

39August 2006JDJ.SYS-CON.com

Traditional Databases Are Passive
Most complex GUI screens use complex SQL – multi-table
joins, column aggregations, and multiple predicates for fil-
tering, grouping, etc. to construct the dataset being viewed.
Consider a real-time application like a financial stock
monitoring program or a traffic management system with
hundreds of concurrent clients with equally large numbers
of complex queries that are continuously being executed
once every second. The traditional relational database that’s
built for storing data efficiently and guaranteeing consis-
tency won’t be able to cope with this demand. Relational da-
tabases are passive, executing queries on sitting data only.
Today’s complex applications, however, require a system
that can very efficiently execute queries as data streams in.

A SQL Continuous Query Engine – An Active Data
Management System
	 By building a database engine designed specifically so
queries can remain standing and active – or continuous
— the scalability, reactivity, and organization of multi-tiered
data-centric applications can be radically altered. Continu-
ous queries (CQ) let users get new results from a database
without having to issue the same query repeatedly.
	 Queries no longer have to be reissued to refresh result
sets, logic that has to execute in response to complex chang-
es in a data model can actively register interest directly from
the source, and business logic can be safely co-located with
application data in a relational model without scalability
limitations.
	 Continuous querying technology works through an en-
gine that efficiently groups and filters predicates from large
numbers of queries, enabling several key things to happen:
•	 When the server first gets a continuous query, it not only

replies with an initial result set, but it analyzes the query
predicates (selection criteria) to group it logically with
other similar queries.

•	 The engine can then quickly identify what continuous
queries are affected by any given data modification (an
insert, update, or delete against the relationally struc-
tured operational data).

•	 The engine can send only the deltas to each CQ client
needed to update its existing result set, in effect exactly
the data necessary for the client to hold a materialized
view of data from the server.

	 The inherent power of this technology lies in both its
simplicity and natural scalability. With an in-memory
database and some very simple extensions to existing query
languages, we’re suddenly capable of building a middle-tier
that combines all of a database’s operational benefits and
none of its limitations. At the same time, we can build ap-
plication server clients that express interest in data through
conventional queries without having to trade performance
for data currency or functional sophistication for develop-
ment effort.

Where Does It Apply?
While the focus of this article is to illustrate the power of
CQ to provide real-time view maintenance in graphi-
cal user interfaces, the power of this paradigm is well
beyond this. Continuous querying is part of a new data
management paradigm called stream data processing
(see the References section below for further informa-
tion) and can be used to monitor multiple streaming
sources of data, analyze these streams for patterns of
interest, and respond instantaneously. The sources of
the data could be disparate – RFID sensor events, events
from business applications across an enterprise, exter-
nal sources, etc.
	 If the applicability of the technology were to be charac-
terized in two points they would be:
1.	Data is changing very rapidly and decisions have to be

Gideon Low is a senior

technical architect at

GemStone Systems.

Gideon has over 10 years

of experience in the

development, manage-

ment, and sales of high-

performance large-scale

distributed systems. His

focus over the last seven

years has been in high-

speed electronic trading

systems as CTO at Silicon

Summit Technologies (A

FIX/OMS vendor) and

VP, client connectivity

technology at Lehman

Brothers. Gideon joined

GemStone in 2005 as

a senior architect to

help bring GemStone’s

GemFire product to Wall

Street’s most demand-

ing high-performance

environments.

 Figure 1

JDJ.SYS-CON.com40	 August 2006

made instantaneously.
2.	The system can analyze hundreds to thousands of pat-

terns (rules or query predicates) with thousands of
events pouring in every second.

Leveraging CQ in a Financial Order Tracking System
	 A great example of a system with stringent real-time data
requirements is a securities trading order-tracking system.
Diverse event streams such as customer orders, order ex-
ecutions, and market data quotes must be combined into a
continuously updated view provided to multiple end users.
Early implementations — built at a time of much smaller
order volumes and slower workflows – used client/server
architectures that required GUIs to poll the database for
updates.
	 As trading volumes grew and firms realized that they
could gain a competitive advantage with faster trading
systems, we started seeing trading application servers that
could publish real-time updates to trader GUIs. Imple-
menting this functionality efficiently — with predictable
low-latency and high throughput – required a much more
sophisticated development model than client/server could
provide and so the effort to build, maintain, and operate
these systems grew quickly. The example in Figure 1 strips
functionality to its bare essentials to illustrate the relative
merits of conventional and CQ architectures.

Data Model
	 For simplicity’s sake, our example uses only two tables
— Orders and Quotes, as shown in Table 1.
	 The Orders table simply tracks the orders clients have
sent you and the number of shares filled in each one. The
Quotes table keeps track of market activity for any symbol
that exists in the Orders table, so the GUI displays market
activity associated with the order to the responsible broker.
This means that we have three event streams coming into
the system: orders from clients, order fills from a stock

exchange, and market data quotes from a quote feed. These
three event streams must be coalesced into a coherent view
within the Order Tracking System. Naturally, in the real
world these systems are much more sophisticated — requir-
ing transactions, many more data entities and streams, and
complex user interactions, but we’ll keep things simple and
explain later how the example may be extrapolated to ad-
ditional complexity.
	 We’ll describe the components and options for this
use case in three sections. The first shows how to build
a simple database publisher application for quotes and
orders. The second shows how you might build a client
application using plain JDBC, or with the addition of da-
tabase and JMS queues, and third how you’d build a client
application with Continuous Querying. Note that the full
source code and pre-configured runtime configurations
for the DataPublisher CQExampleClient applications are
available for download at http://www.gemstone.com/
download/.

A Simple Data Publisher for an Order Tracking System
	 The Data Publisher application is quite straightforward.
It instantiates Order and Quote generation simulators and
handles their events by “publishing” them in a JDBC data-
base with SQL Insert and Update statements.
	 Let’s take a closer look at the Publisher application by
inspecting some of its code. The classes we need to under-
stand are SimpleDataPublisher, SimpleQuoteGenerator, and
SimpleOrderGenerator.
•	 SimpleOrderGenerator has a pre-defined list of Orders

and Customers. Its constructor has only one argu-
ment — a listener that implements the methods
onNewOrder(SimpleOrder o) and onOrderUpdate(Sim
pleOrder o). In the constructor it creates a basket of 63
orders (which results in onNewOrder() callbacks), and
then spawns a thread to gradually fill the orders by incre-
menting the fillQty property of each one.

 Figure 2

Jags Ramnarayan is the

chief architect for the high-

performance, distributed

data management product

line at GemStone Systems.

He puts on multiple hats

- evangelizing the technol-

ogy, exploring require-

ments with customers,

and managing the overall

direction of the architecture

decisions. In the past Jags

participated in several Java

and W3C standards for

GemStone and BEA. On the

side, Jags is also pursuing

a MBA degree, but hopes

to remain technically

focussed.

41August 2006JDJ.SYS-CON.com

•	 SimpleQuoteGenerator generates simple market data
quote streams in response to calls to its addSymbol
(String symbol) method. It’s constructed with a listener
that implements onQuote (SimpleQuote q), and it
spawns a thread that randomly updates each Symbol’s
quote at a steady rate.

	 SimpleDataPublisher connects to a JDBC database with
a JDBC driver, either creates or clears out the Quote and
Order tables with DDL/DML statements, and then uses
the two generator classes as event sources. Each generator
callback event (onQuote(), onNewOrder() and onOrderUp-
date()) fires logic to perform a SQL INSERT or UPDATE to
the CQ server, thus creating or modifying records in the
Quote and Order tables. It contains only the three following
members:

Connection c = null; // The JDBC Connection to the CQ Server

SimpleQuoteGenerator quoteGenerator = new SimpleQuoteGenerator (

this);

SimpleOrderGenerator orderGenerator = new SimpleOrderGenerator (

this);

	 The constructor of SimpleDataPublisher looks like Listing 2.
	 Using a handy helper class to hide the boring details,
the code gets a handle on a valid JDBC Connection object,
creates or clears the necessary tables, initializes the Or-
derGenerator (which causes an onNewOrder() callback for
each new order), and then starts the QuoteGenerator and
OrderGenerator threads to initiate the event streams.
	 Note that for each new order created, SimpleDataPub-
lisher calls the SimpeQuoteGenerator.addSymbol() method
to register a new Symbol for quote generation — thus
making sure that we get quotes for each symbol handled by
system (duplicate symbols are ignored).
	 Each time SimpleDataPublisher gets a callback invoca-

tion, it creates a SQL statement and submits it to the CQ
Engine. For example, when onUpdatedOrder() fires, the
logic in Listing 1 executes:
	 You can see that this is a very simple O/R mapping
exercise plus JDBC database interaction logic. The logic that
executes in response to onQuote() and onNewOrder() is
fundamentally the same — and uses SQL/JDBC to update
or insert a table record. Once started, SimpleExamplePub-
lisher continues to update the order and quote records in
response to the callbacks it’s getting from the generators.
This is a good time to reflect on the how this fits with your
existing experience — the type of code above already exists
in most systems, but how often does it serve as BOTH a
database update and a notification to systems that have
previously queried the updated record?
	 Now that we have an application that can publish our order
and quote data to a JDBC database, let’s explore different ways
of building the client (or subscriber) application. We’ll describe
several approaches in varying levels of detail: JDBC polling,
JDBC with simple JMS-based change notifications, and JDBC
with continuous querying. To display data in a Swing GUI,
we’ll use a very handy component called the QuickTable (see
http://quicktable.org for more info), which can build a very
nice JTable from nothing more than a JDBC ResultSet.

Maintaining Real-Time Views Using Continuous Polling
	 A simple and somewhat naïve implementation would let
the user set a refresh interval and continuously re-execute
the query to refresh its view. The code in Listing 3 illustrates
the JTable and the use of a thread to continuously refresh
the view.
While simple, this method has several obvious disadvan-
tages:
(1)	With many concurrent views across hundreds of trader

desktops, the database will be inundated with SQL select
requests. In a more realistic application the queries will

be more complex and the volume of data much
larger, causing the database to buckle under pres-
sure.
(2) It’s quite inefficient to continuously re-execute
the query, particularly when the underlying data
hasn’t changed. This is especially true when work-
ing with obscure stocks that may change only a few
times during the trading day.

View Maintenance Using JMS
	 The most common approach in use today for
real-time information management is to employ
messaging to capture and route events from the
backend database. Rather than route every single
event, active filtering can be done in the backend
servers through the use of JMS selectors. More
information on JMS and JMS selectors can be found
at http://java.sun.com/products/jms/.
	 Modern databases all support the asynchronous
capture and propagation of database events. For
instance, with Oracle, a simple mechanism would
be to use a row-level trigger on the order and quote
table and route the DML events to an Oracle Ad-
vanced Queue (AQ). The AQ can then be accessed

Table 1

Table Orders:
Column Name	 Data Type	 Comment
OrderID	 Varchar	 Unique Identifier for an Order and the Primary Key of this table.
Symbol	 Varchar	 What you want to order (e.g., IBM, MSFT, etc.).
Price	 Numeric	 Price you want to buy or sell (only used if OrderType is the “Limit”).
Quantity	 Integer	 How many shares to buy or sell.
Side	 Char(4)	 Either “Buy” or “Sell.”
OrderType	 Char(6)	 Either “Market” or “Limit.”
FilledQty	 Integer	 How many shares have been filled on the order so far.
		 When the order is completely filled, this equals Quantity.
Client	 Varchar	 The name of the Client who sent you this order.
UpdateTimestamp	 DateTime	 Timestamp of the last update to row.

Table Quotes:
Column Name	 Data Type	 Comment
Symbol	 Varchar	 For example, IBM, MSFT, etc. Also Primary Key.
Bid	 Numeric	 Current price to sell.
Ask	 Numeric	 Current price to buy.
BidSize	 Integer	 Number of shares available at Price.
AskSize	 Integer	 Number of shares available at Price.
LastQty	 Numeric	 Quantity of the last executed trade.
LastPrice	 Numeric	 Price of the last executed trade.
UpdateTimestamp	 DateTime	 Timestamp of the last up

JDJ.SYS-CON.com42	 August 2006

STAND ON THE
SHOULDERS OF GIANTS

RCP Developer

RCP Developer™

SWT Designer™

RCP Developer™

 WindowTester™ RCP Packager™

from remote machines as a JMS destination (Queue).
	 The code in Listing 4 illustrates how our example in
Figure 2 can be changed to make use of JMS events to
refresh the JTable. Though this method doesn’t require the
application client to continuously execute queries, it still
requires the client to re-execute the complete query to the
database. One could argue that the database event genera-
tor could provide sufficient information in the message so
as to reconstruct the client JTable from the message itself.
But, in most real-life situations, the query could be quite
complex involving joins, complex query predicates, projec-
tions involving aggregate column values and such, making
it nearly impossible to calculate how exactly the client-side
view has been impacted.
Again, much like the first naïve approach, with many con-
current clients with hundreds or even thousands of views
to maintain, the approach quickly stretches the limits of
database scalability.

Real-Time View Maintenance with Continuous Query
	 Now that we have examined polling- and messaging-
based approaches to building a client application for Order
Status Tracking, let’s take a look at how we might build a
better mousetrap with Continuous Querying (See Figure
3). To build this example, we use the GemFire Real-Time
Events (RTE) Server — a JDBC in-memory database product
that provides a robust CQ Engine.
	 The first requirement is to re-configure the DataPublisher
application to connect to the RTE CQ Server JDBC database
instead of a traditional RDBMS. Thanks to standard JDBC,
this only means changing the JDBC driver classname and
connection URL parameter. Nothing else in the DataPub-
lisher applications needs to change as the database interac-
tion is all in standard SQL-92, which all JDBC databases
support.
	 The client side is encapsulated in the CQExampleGUI
class, which, again, requires very little code beyond stan-

dard JDBC. Less, in fact, than the polling- and JMS-based
client examples described above. The main difference is
the addition of some logic to handle Continuous Query
callbacks instead of a JMS listener or polling thread. All of
the logic is encapsulated in the CQExampleGUI class:
	 For this simple example, CQExampleClient has only three
important members:

Connection c = null; // The JDBC Connection to the CQ Server

CQManager cqManager; // The Continuous Query manager	

DBTable dBTable1 = null; // A handy QuickTable for rich visual

display

	 The constructor for CQExampleGUI looks like Listing 5.
With these few lines of code, we’ve painted a nice GUI with
the contents of our simple order management database. Note
that though the SQL Select statement used to initiate the
Continuous Query is relatively simple, most Financial Order
Tracking systems actually have a “view-builder” screen that
lets users select columns and filter conditions, which results
in much more complex dynamically generated SQL.
	 Now that we’ve built a GUI in much the same way as tradi-
tional client/server, what remains is to handle the CQ update
events. The logic for this is implemented in the afterResult-
sUpdated () method, which passes in an CQUpdate argument
containing a collection of RowDelta objects and a handle on the
refreshed JDBC ResultSet. With the convenience of a Quick-
Table, only one line of code is necessary to update the GUI:

dbTable1.refresh (cqUpdate.getResultSet(););

	 In a more sophisticated application, you can handle the
update in granular detail by iterating over the provided
RowDeltas, which give you the update type (UPDATE,
INSERT, or DELETE), an array representing the old row
column values, an array representing the new row column
values, and a list of the columns actually modified. In short,

 Figure 3

JDJ.SYS-CON.com44	 August 2006

everything you need to handle exactly the data that has
been modified in the CQ Engine’s database and nothing
else. A more sophisticated CQ Callback implementation
usually builds nested loop logic (rows, then update col-
umns) to handle each delta individually.
	 The runtime sequence of events from start to finish is as fol-
lows:
1.	The publishing application receives an event from some

external source. In response to the event, it modifies
data in the CQ Engine’s in-memory JDBC database (i.e.,
updates a filled quantity on an existing order). The code
here is exactly the same as with any non-CQ JDBC data-
base.

2.	The CQ Engine gets the update, applies it to the data-
base, and then identifies which Continuous Queries are
impacted by the data modification. This is really the
magic that makes the entire design pattern successful.

3.	The CQ Engine packages row deltas specific to each
Continuous Query’s requirements and pushes them
back to the clients over the JDBC connection. Note
that these row deltas are from the client’s perspec-
tive — meaning that they represent added, modified,
and removed items from the client’s ResultSet view.
An UPDATE statement in the CQ Server database can
thus lead to completely different client view deltas,
depending on whether the table update caused CQ join
conditions to be newly met (causes INSERT RowDelta),
dropped out (causes DELETE RowDelta), or if a previ-
ously met condition continues to do so (causes UPDATE
RowDelta).

4.	 The CQ Clients update their JDBC ResultSet objects with the
deltas and invoke any registered callbacks — in our example,
we simply bind the ResultSet to a GUI grid component.

	 If you download and run this example, you’ll see a screen
that looks like Figure 4.
	 Since the Publisher application is continuously
updating the CQ Engine database’s Quotes table and
Orders.FilledQty/Orders.OrderStatus fields, you’ll notice
that they keep changing several times a second. Thus
the example shows how you use a simple JDBC syntax
to create a continuously updated view of data and then
handle some very straightforward callbacks to execute
custom logic in response to data changes. This archi-
tecture is capable of scaling to thousands of inbound
events/second servicing thousands of Continuous Que-
ries.

Conclusion
	 Continuous Query technology promises to provide a ro-
bust new development model for applications that require
complex real-time views of rapidly changing operational
data. What makes this approach so exciting is the ability to
combine the syntactical power of standard query languages
with the performance and scalability required of modern
applications.
	 Although we focused on the basic functional aspects
of CQ technology in this article, you’ll find that the tools
on the market have some very advanced capabilities as
well. Features such as CQs with User Defined Aggrega-
tions (UDAs), advanced horizontal scale-out, trans-
parent high availability and failover, intelligent flow
control, distributed transactions, and much more are
either available now or soon will be. This is a technol-
ogy worth keeping an eye on as you encounter use cases
where client views of operational data must be continu-
ously maintained.

 Figure 4

45August 2006JDJ.SYS-CON.com

Listing 1
StringBuilder sql = new StringBuilder ();
Date timestamp = new Date (o.timestamp); // for the
UpdateTimestamp column.
		
sql.append (“UPDATE orders SET FilledQty=”);
sql.append (order.fillQty);
sql.append (“, OrderStatus = ‘”);
sql.append (order.orderStatus);
sql.append (“’, UpdateTimestamp=”);
sql.append (timestamp);
sql.append (“WHERE OrderID = ‘”);
sql.append (order.orderId);
sql.append (“’”);

/* For example this might create
UPDATE Orders SET FilledQty=500,
OrderStatus=’Partial Fill’,
UpdateTimestamp=’2006-06-06 12:30:02’
WHERE OrderID = ‘123456’; */

Statement st = c.createStatement (ResultSet.TYPE_SCROLL_
INSENSITIVE,
 	 	 ResultSet.CONCUR_READ_ONLY);
st.executeQuery (sql.toString());

Listing 2
Properties conxProps = new Properties ();
// Use whatever database-specific parameters are required here.
conxProps.setProperty (“endpoints”, “server1=localhost:30303”);
c = initJDBCConnection (conxProps);
		
// Initialize the Data by creating the necessary tables. If they
already exist,
// DataPublisherHelper deletes their contents instead.
DataPublisherHelper.createOrdersTable (c);
DataPublisherHelper.createQuotesTable (c);
		
// Initialize orders. The SimpleOrderGenerator will create a
large basket of
// orders. We receive a onNewOrder() callback for each one.
orderGenerator.initOrders();
		
// Start streaming quotes and order fill notifications
orderGenerator.start();
quoteGenerator.start();

Listing 3
	quick.dbtable.DBTable dBTable1 = null;
java.sql.ResultSet resultSet;

// SQL select to fetch all orders and corresponding quotes for
select financial instruments
static String quotesSql = “SELECT o.Symbol, o.Client, o.Side,
o.Quantity, o.OrderType, o.FilledQty, o.OrderID, o.ClientComment,
q.Bid, “ +
	 “q.Ask, “ +
	 “q.AskSize, “ +
	 “q.BidSize, “ +
	 “q.UpdateTimestamp “ +
	 “FROM quotes q, orders o WHERE q.Symbol = o.Symbol “ +
 “ AND o.Symbol IN (‘IBM’, ‘INTC’, ‘AMD’, ‘MOT’)”;
// NOTE: The “IN clause” above is typically dynamically configured
based on user choice; There will be numerous such views that are
concurrently monitored by the user
// Initialize the GUI table and start the monitor thread
	 public void initOrderQuoteTable() throws Exception {
	 {
	 // set Frame properties
	 setSize(1280,1024);
	 setVisible(true);

	 //create a new quicktable
	 dBTable1 = new DBTable();

	 //add to frame
	 getContentPane().add(dBTable1);

	 // to create the navigation bars for the table
	 dBTable1.createControlPanel();
	
	 // Start the polling thread to refresh the OrderQuoteTable
	 startPollingThread();

 …..	

	 }

public void startPollingThread() throws Exception {
Thread pollingThread = new Thread(new Runnable() {

public void run() {
 // < Execute the query on DB and obtain instance of java.sql.
ResultSet
 //Refresh the Jtable
 synchronized (resultSet) { dBTable1.refresh (resultSet); }
 pollingThread.sleep (configuredTimeInterval);
 }
		});
pollingThread.start();
}

Listing 4
// Do the following instead of polling the DB …. Replace startPol-
lingThread above
// Acquire connection of the JMS provider service, start a non-
transactional session on the DB events queue, create a receiver
on the queue and set the listener to receive the events asynchro-
nously.

queueConnectionFactory = jndiLookup(<JMS provider URL, etc>);
queueConnection = queueConnectionFactory.createQueueConnection();

queueSession = queueConnection.createQueueSession(false, Session.
AUTO_ACKNOWLEDGE);
queue = jndiLookup(queueName);

// Use JMS message selector to limit events routed to Jtable cli-
ent process
// Note that ‘symbol’ would have to be explicitly set as a JMS
header property when message
// is constructed
String selector = “symbol IN (‘IBM’, ‘INTC’, ‘AMD’, ‘MOT’)”;
queueReceiver = queueSession.createReceiver(queue, selector);

dbEventListener = new DBEventListener();
queueReceiver.setMessageListener(dbEventListener);
queueConnection.start();

// Implement the DBEventListener; Implements javax.jms.
MessageListener interface
public class DBEventListener implements MessageListener {

 public void onMessage(Message message) {
 try {
< Execute the query on DB and obtain instance of java.sql.
ResultSet
 //Refresh the Jtable
 	synchronized (resultSet) { dBTable1.refresh (resultSet); };
 } catch (JMSException e) {
 <Handle exception>;
 }
 }
 }

Listing 5
// The SQL we’ll use as a Continuous Query
String CQSql = “SELECT * FROM Orders, Quotes WHERE Quotes.
Symbol=Orders.Symbol”;

// Create a new QuickTable for visual display of our JDBC
ResultSet
dBTable1 = new DBTable();

// Add the QuickTable to the Swing frame
frame.getContentPane().add(dBTable1);
	
// Connect to the Real Time Events engine (essentially the same as
any JDBC connection)
Properties conxProps = new Properties();
conxProps.setProperty (“endpoints”, “server1=localhost:30303”);
c = initCQEngineConnection (conxProps);

// Note that CQManager is specific to the the GemFire RTE CQ
implementation
// Create a CQManager for the Connection
cqManager = CQManager.getCQManager (c);

// Create an register the continuous query using the CQManager and
our SQL String.
CQ exampleCQ = cqManager.create (CQSql);
ResultSet rs = exampleCQ.register (“exampleCQ”, CQSql);

// Populate the GUI QuickTable with the Result Set returned by the
CQ initialization.
 dBTable1.refresh (rs);
	
// Once the table has been initialized with data, start listening
for CQ Updates .
exampleCQ.setCQListener (this);

JDJ.SYS-CON.com46	 August 2006

omputers can generally be
characterized into two types:
ones that are designed to have
more than one user attached and
those intended for a single user.

In the beginning almost all computing
was done on large multi-user machines,
partly due to their expense, which
precluded their use to all but large
institutions or wealthy corporations.
Mainframes ruled this era and excelled
at their role: providing a reliable com-
puting platform for hosting databases,
transaction servers, and centralized ap-
plications. The interaction was through
character-based screens that, while
providing fast and efficient green screen
access, was to be their Achilles heel.
	 At the other end of the scale are per-
sonal computers. PCs have two major
benefits over mainframes: a lower cost
per unit and the ability to host operating
systems with graphical user interfaces.
GUI applications make use of event-
driven user interfaces that can respond
to fine-grained mouse, keyboard, timer
and paint requests. This provides the
framework on which everything from
shoot-em up 3D games, WYSIWYG word
processors, business presentations
with embedded video, and a plethora of
powerful desktop programs reside.
	 Most of the problems over the 20
years in IT have occurred because one of
the two ends of the computing spec-
trum has tried to venture into the other’s
domain. PCs tried to become multi-user
servers and big iron boxes attempted
presentation logic.
	 The computing section of my local
science museum has an exhibit showing
black and white photographs from the
1970s with reel-to-reel tape drives, floor-
standing disk platters, and wardrobe
CPU units filling an operations room.
Next to this is a display case with an
Altair 8800, the sign teaching us how the
smaller machine replaced the room-fill-
ing mainframe by matching its comput-

ing power at a cheaper cost. The analogy
drawn is to that of the dinosaurs, where
the large and inefficient behemoths
couldn’t cope with extreme climate
change and died out while smaller and
nimbler mammals arose to rule the
world in their place.
	 The rise of PCs is a huge phenom-
enon where, for most of the 1980s and
1990s, there were more new PCs sold per
year than the entire installed base. The
prediction by George Moore in 1965 was
that the transistor density of semicon-
ductor chips would double every 18
months. This largely held true for the
next 40 years, benefiting PCs that con-
tinued to double in speed while halving
in cost. For those who were in the game
of downsizing from mainframes, this
enabled them to create server farms by
simply daisy-chaining PCs together.
	 The big iron server guys have always
wanted to challenge the rise in PCs,
fueled by resentment at the insults of
“dumb screen” and “legacy system” that
were being thrown at them. The Intern
et gave them an opportunity to do this,
by enabling them to reinvent themselves
as hosts for Web application servers
dishing up HTML to clients in place of
3270 or 5250 datastreams.
	 What has occurred is that PCs have
scaled up to become servers and servers
have become controllers of presentation
through HTML. Both are poor compro-
mises and I think have hurt usability,
resilience, and general IT efficiency. The
trend in many social systems can be
characterized as a pendulum that swings
between two extremes, politics being a
prime example – once policies become
attempted, they fall short of promise and
expectations, allowing the previous failed
polemic to regain popular traction.
	 For the fast, nimble PCs that now
fill rooms, their fate, ironically, is to be
replaced with smaller and faster modern
mainframes that outperform them in
terms of speed, price, and simplicity.

Because of advanced workload manage-
ment techniques, mainframes can be
driven harder, often running at 70–90%
utilization, while Wintel boxes typically
only manage 5%. While Moore’s law held
fast for the past 40 years, the runway
has run out, as physical laws govern-
ing thermal flux prevent any further
significant miniaturization. A modern
Pentium consumes 100 watts of power
and generates more heat per square
inch than exists inside a nuclear power
station’s reactor core. The scalability of
a virtualized mainframe is huge, with
benchmarks showing that up to 20,000
copies of Linux all running Web servers
can co-exist happily inside a single box.
	 For the PC, what we’re seeing now is
a growth in applications that exploit its
capabilities as a first-class client desk-
top, rather than a rendering engine for
dumb HTML. For Google, the bastion of
all things Web, two of their most impres-
sive applications are Google Desktop,
which indexes all of a PC’s files and
provides a set of integrated functions
such as chat, to-do lists, phone clients,
and for mapping Google Earth offers the
ability to walk the earth in 3D making
use of the PC’s native graphics function-
ality through DirectX.
	 What this should spell is a new era
in which the two poles of computing
go back to basics and rediscover what
they’re best at is doing what they were
designed for. Big multi-user serv-
ers will continue to grow in terms of
their capacity to become application
hosting giants, while PCs will enjoy a
period of rich applications that fully
exploit their graphics capabilities and
provide a high-usability end point.
Over the past 20 years the server and
the client have fought wars where each
has tried to replace the other. What we
need for the next 20 is for each to excel
at what they’re best at, and for users to
benefit from faster, easier, and richer
software.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

The Death
of Mediocrity

C

Joe Winchester is

a software

developer

working on

WebSphere

development tools

for IBM in

Hursley, UK.

joewinchester@
sys-con.com

JDJ.SYS-CON.com48	 August 2006

uilding objects in the Eclipse
IDE is simple – it’s a point-
and-click solution. However,
as applications built on the

Eclipse platform mature the need for
building outside of the IDE increases.
This need can be driven by the
development team that is striving to
perform agile development techniques
where builds are executed based on
a file “check-in” action into an SCM
tool. The need can also be driven by
IT governance where a scheduled and
audited production build is required.
Moving from builds managed inside
of the Eclipse platform to builds man-
aged outside of the Eclipse platform
can be a big task in itself. Don’t hesi-
tate to make this jump. It’s a jump that
you’ll find you can’t do without. The
sooner you get out of your point-and-
click build process, the sooner your
application will begin to mature.
	 Defining the build process should
not be taken lightly. Auditability
and traceability of built objects are
becoming increasingly important
due to IT compliance mandates. This
means that your builds must become
more traceable than a point-and-click
process. Don’t make the mistake of
addressing the issue of building out-
side of the Eclipse IDE long after the
application has grown to an unman-
ageable size. Delaying the inevitable
only results in a poorly managed,
unplanned, ad hoc build process that
isn’t sustainable, can’t meet IT compli-
ance, and involves expensive hidden
costs in maintenance and fixes.
	 There are three ways of addressing
the build process outside the Eclipse
IDE. The most common method is
to manually develop and maintain
Ant/XML scripts. These scripts use
Ant Tasks from the Apache Founda-

tion to act as a wrapper to the Java
compiler. The second method is to
write scripts that call Eclipse in what’s
called a “headless” mode. A script that
executes the build in headless mode
acts in the same way as the point-
and-click process inside the Eclipse
IDE, but does the build from a script.
And finally, the preferred method is to
use a commercial build tool that can
automate the creation of the scripts.
Commercial tools that minimize the
use of manual scripts establish a more
repeatable and traceable build work-
flow, the ultimate goal of any solid
development process.
	 If you don’t have the luxury of a
commercial build tool that can create
a solid reusable build framework, you
must create a manual build process
that’s as standardized as possible. A
“manual” build process refers to any
scripted build process that has to be
maintained manually. Even if you
execute your manual scripts through
a job scheduling build management
tool, your builds are still manual be-
cause you must manually maintain the
build logic contained in the scripts.
	 When writing the manual build
process, your choices become writing
Ant/XML scripts to perform the build
or to use the Eclipse headless mode
option. Establishing a repeatable build
that can be traced requires that you
concisely define how the build executes
and with what source code. The use of
the headless mode removes that level
of control. It provides a little more func-
tionality than using the point-and-click
process inside Eclipse. When running a
headless mode script, you’re still relying
on the Eclipse IDE to control the build.
For this reason, defining a build process
using Ant/XML is recommended if a
commercial tool isn’t available.

	 If you review any Ant/XML script,
it may appear that the process of
converting Java source into Java jars
is complicated. This isn’t necessarily
true. Ant/XML files execute in a serial
fashion, top to bottom. Everything
must be precisely coded in a par-
ticular order. That’s why XML build
scripts can be very large and difficult
to debug. There are some suggested
standards on writing XML scripts,
but they’re not always followed. At a
minimum, XML build scripts should
follow a basic flow with pre-process-
ing and post-processing steps that
are consistent for every XML script
created, planned, or unplanned.

Pre-Processing Steps
	 Pre-processing steps are used to
establish the environment in which the
subsequent task will execute. The point
of setting up these pre-processing steps
is to get the source code and variables
organized and do overall housekeeping
before compilation starts. A common
mistake is to mix together these house-
keeping steps for each call to the Java
compiler or before calling an Ant Task.
By organizing the pre-processing steps
at the beginning of the XML scripts,
the build process becomes clearer and
easier to follow. It also reduces redun-
dancy and results in an improved, more
efficient process. These are the recom-
mended pre-processing steps:

ClassPath
	 The CLASSPATH identifies which
Java Classes are going to be used to
resolve inter-class dependencies. The
Java compiler will search the CLASS-
PATH in a first-found method and use
a file as soon as it’s been located. The
CLASSPATH can include Jar and Zip
files and directories.

IDE

by Steve Taylor

Managing a Standardized Build
Process Outside of the Eclipse IDE

B

Point-and-click solutions won’t cut it

Steve Taylor is president

and CTO of Catalyst Systems

Corporation. He is a senior

developer with 19 years

of experience in both

distributed and mainframe

application development.

Prior to founding Catalyst

in 1995, Steve served as

a technical consultant

assisting companies with

defining a solid build and

release process. In this

capacity, he became expert

in the use of configuration

management and release

tools and recognized the

need for a solid, reusable,

and repeatable build

process. At this time he

began developing the build

procedures that have since

become Openmake. Steve

got his BS in computer

science/mathematics from

the University of Illinois-CU.

JDJ.SYS-CON.com50	 August 2006

	 When setting the CLASSPATH it’s
important to make sure of two things.
First, the CLASSPATH should only be
defined once in your process. Second,
only the jar files and class directories
that are used should be referenced in
the CLASSPATH. Don’t reference other
unused jars since then the Java com-
piler will do more work than needed,
slowing down your build substantially.
And specifying only the used jars will
make for quick dependency identifica-
tion. There’s nothing worse than at-
tempting to trace jar file dependencies
only to find that a large number of jar
files aren’t needed. This can add sub-
stantial time to debugging your builds.
	 The use of wild cards is always
a topic of debate. Wild cards can
eliminate typing in your script, but in
the end may cause your build process
to include more objects than needed.
List each jar file in the CLASSPATH ex-
plicitly to prevent any vagueness. This
is particularly critical when exposing
your build details for IT compliance
mandates. Wild cards aren’t traceable.
	 Setting the CLASSPATH should be
the first task in the Ant XML script.

Copying and Renaming Files
	 There are cases in which source
code, jar and property files have to be
copied from one location to another
for the compiler to find the file or put
it in the archive correctly. Do yourself
a favor and minimize the use of copy-
ing and renaming of files. It makes it
extremely difficult to trace the archive
contents back to the original source.
Copying files around also creates
a more “magical” build process. IT
compliance mandates want a clear
view into your process. No “magic” is
needed.
	 Instead of copying or renaming
the files, put the files in the correct
location from the start. Don’t use your
Ant/XML script to clean up a mistake
in file organization. This may involve
updating your project directory struc-
ture and making your Source Code
Management tool more efficient. As an
alternative to copying and renaming
files, the use of the Ant Task “Zip” and
its attributes, such as “dir” and “prefix”
can handle getting source from one
location and putting it in the archive at
a different location.
	 This sample XML code from the
Apache Ant Manual demonstrates
using the Ant Task “Zip” to take one
source location (htdocs/manual) and

put it in another location (docs/user-
guide):

 <zip destfile=”${dist}/manual.zip”>

 <zipfileset dir=”htdocs/manual”

prefix=”docs/user-guide”/>

 <zipgroupfileset dir=”.”

includes=”examples*.zip”/>

 </zip>

Compile Step
	 The compile step is, of course, the
heart of your process. It will become
the largest section of XML script. The
important point to remember when
defining this portion of your script is
the management of dependencies.

Dependency References
	 With Ant, you can explicitly define
the dependencies between tasks. For
example, the JAR task can be dependent
on the JAVAC task. Ant will also let mul-
tiple task dependencies be established.
Don’t be seduced by this seemingly
convenient Ant Task. While it seems use-
ful, it can be burdensome. When tracing
the order of executing the various Ant
tasks in the Ant/XML script, it’s much
easier to follow a dependency chain that
has only one task dependency instead of
multiple ones. For example:

Scenario 1
JAR Task depends on JAVAC Task
JAVAC Task depends on the COPY Task
COPY Task depends on the INITIAL-
IZATION Task
Versus

Scenario 2
JAR Task depends on the JAVAC Task
and COPY Task
JAVAC Task depends on the COPY Task
and INITIALIZATION Task
COPY Task depends on the INITIAL-
IZATION Task

	 As you can see in Scenario 2, there are
redundant Ant task dependencies. For
example, the COPY Task is redundant on
the JAR Task. This redundant use of COPY
Tasks isn’t needed since it’s already refer-
enced higher up in the task dependency
hierarchy being the JAVAC Task.
	 There will be cases when you want
to have multiple task dependencies
as in the creation of a war file. In this
case, multiple task dependencies may
be needed to ensure that all of the jars
are created before the war. But each jar
should have just one task dependency,
that being the JAVAC task.

Identifying Source Code
	 Finding your source can seem like
an easy item at first, but when ap-
plications get bigger there’s a greater
chance that wrong or obsolete code
is included. Using wildcards in the
Ant/XML script is an easy way to mini-
mize the need for typing, but for the
wildcards to be effective, the source
files have to be efficiently organized
in a proper Java package directory
structure.
	 The best way to manage source is to
define an efficient package directory
structure. So you must move beyond
your unique needs and address the
package names at a more global level
in your organization. It’s best to make
sure that a corporate Java package
structure is agreed on and used. As
part of the Java package structure
it’s best to keep the package names
simple. Really long package names
can cause problems with the file limits
on the Windows operating system.
Java compiles on Windows have been
known to stop working when the
254-character limit is exceeded. To
make this problem even peskier, the
script may work on one user’s machine
but break on another’s. This is due do
the build directory root name being
added to the package names. For
instance, one person may do the build
in c:\mybuilds but another may build
in d:\onlinedata\j2ee\development\
code. The difference in the directory
name can make or break the build by
pushing the 254-character limit.
 	 Another item that defines the loca-
tion of source code is the use of the ex-
cludes attribute of the JAVAC Ant Task.
It’s best to remove the older obsolete
code from the Source Code Manage-
ment tool and from the file system
instead of using the exclude attribute.
Most SCM tools provide for renaming
or removing an item without loosing
all of the history. SCM tools also allow
for comments that create a level of
traceability on why a piece of code is no
longer required. Having this informa-
tion in the SCM tool makes for easier
access versus the information being
hidden in a comment in the Ant XML.

JAVAC –sourcepath
	 The native command line Java com-
piler (javac.exe) has an interesting flag
called –sourcepath that provides a direc-
tory concatenation to find the source
code. It works on a first-found basis. So
once the source has been located, the

51August 2006JDJ.SYS-CON.com

IDE

directory browse stops. There are two
advantages to using this parameter.
First, all of the code doesn’t have to be
found in the current build directory. That
is, source code can be found in multiple
locations. Thus, the build process only
has to check out the changed code and
find the remaining code from a previ-
ous full checkout. This will speed the
overall build process by minimizing the
files to be checked out. Second, if the
JAVAC command is given a Java file as a
parameter it will then check using the
–sourcepath parameter for additional
source that’s referenced by the original
Java file and compile it too. This process
will allow just the changed source to be
passed as the parameters to JAVAC and
JAVAC will figure out all the remaining
dependencies for you.

Post-Processing Steps
	 As with the pre-processing tasks, the
post-processing tasks should avoid items
such as copying and renaming files. If an
archive has to be given a specific name
then that name should be handled on the
archive task instead of doing a copy or re-
name. The use of multiple task dependen-
cies should also be minimized to ensure
easy traceability and IT compliance.

Testing
	 One of the common items to do in
the post-processing phase is to test.
These tests are usually unit tests such
as Junit. But these tests can also include
some basic tests about the archive itself,
such as checking to see if the correct
deployment descriptor and proper-
ties files have been used or checking
the number of files in the archive to
verify at a basic level if all of the source
was compiled. Another useful test is to
check to see if the archive contains the
correct manifest and directory struc-
ture. Validating these items before de-
ployment can save you the embarrass-
ment of a production failure. It’s best if
these items are extracted and e-mailed
to a tester to verify their accuracy before
deployment.

Deployment
 	 The deployment task should be one
of the last steps in the build process.
It should be dependent on the Testing
task and the Testing task dependent
on the Build task. But it shouldn’t be

the default task that gets executed. You
want to give the user the option of just
building and testing or building, test-
ing and deploying. This lets someone
just deploy.

Variable
	 Beyond the pre-processing, compil-
ing, and post-processing steps in your
Ant/XML scripts, managing variables
is also critical in creating a more stan-
dardized manual process.
	 Using variables lets an Ant/XML
script be written to execute on mul-
tiple machines. This is a cautionary
tale, however, because using too many
variables makes an Ant/XML script
hard to read and debug. It’s best to use
variables for the directory path on the
Jar files in the CLASSPATH and for the
source code locations. For example,
instead of using:

	c:\jdk2\lib\rt.jar you would use

${JAVAHOME}\lib\rt.jar

	 This reference will let different us-
ers have different working locations.
Again, the directory structure of the
source code and libraries should be
laid out efficiently for builds.

Machine-Specific Variables
	 If there are any machine-specific
items referenced in the Ant/XML script
then they should be referenced through
a variable and abstracted out. When you
write the Ant/XML script assume that you
won’t be the only one using the script.
	 By following a standard guideline,
your Ant/XML scripts can become
easier for another developer in your
organization to follow and so more
traceable. This is ultimately what
you’re striving for. Traceability in your
build process can only be achieved
if someone else can follow the build
steps. By maintaining some standard
sections such as pre-processing,
compiling, and post-processing, your
scripts should follow a basic struc-
ture that can be easily identified and
traced.
	 Commercial Eclipse plug-ins are
available that can substantially mini-
mize the need for Ant/XML scripting.
These tools provide a reusable build
framework through a standardized
interface.

	 Commercial build tools that
simply execute your Ant/XML scripts
may be helpful in managing the
many scripts that are created over
time; however, tools that minimize
your scripting effort are preferable
because they create a solid reusable
framework once that can be reused
over and over.
	 The inherent problem of Ant/XML
scripting is that the scripts are written
for one jar and one application at a
time. This creates a lot of redundancy.
Redundancy equates to higher cost
and lower quality. Just as you strive for
reuse when developing applications,
you should strive for reuse in your
application build framework. Using
scripts to do this is close to impossible
because manual Ant/XML scripts
contain hard-coded application refer-
ences.
	 Commercial tools such as Open-
make by Catalyst Systems Corporation,
Perfect Build by CodeFast, and Builder
by Serena address the scripting issue
directly by providing a reusable frame-
work in your build process.
Open Source tools such as Maven
will also assist you in minimizing the
amount of scripting necessary for each
jar file you create.
	 As upper management demands
more accountability from the develop-
ment process, the build component
will be scrutinized more closely. A
point-and-click process from the
Eclipse IDE won’t meet the new IT
mandates. Neither will overly com-
plicated nor non-standardized build
scripts. Eventually you’ll be forced out
of the comfort of your point-and-click
IDE and into a more standardized
method. Your choices will be to rely
on Open Source languages such as
Ant/XML and a lot of hard work or a
commercial tool to help you with the
job. Regardless of your future build
requirements, the effort in creating
standards for the build is critical and
well worth the effort.

References
•	 www.apache.org – Learn about Ant
Tasks, Ant scripting and Maven
•	 www.openmake.com – Learn about
reusable scripts with Openmake
•	 www.codefast.com - Learn about
script generation with Codefast

JDJ.SYS-CON.com52	 August 2006

The Flex® Logo is a Trademark of Adobe Systems Inc. ©Copyright 2006. All Right Reserved

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

he editors of Java Developer’s

Journal are in a unique

position when it comes to Java de-

velopment. All are active coders in

their “day jobs,” and they have the

good fortune in getting a heads up

on many of the latest and greatest

software releases. They were asked

to nominate three products from

the last 12 months that they felt had

not only made a major impact on

their own development, but also on

the Java community as a whole.

	 The following is a list of each

editor’s selections and the reason

why they chose that product.

Awards

JDJ Editors’
Choice Awards

T Joe Winchester
Desktop Java Editor

SwingLabs
	 SwingLabs is an open source labora-
tory for exploring new ways to make
Swing applications easier to write, with
improved performance and greater
visual appeal. It is an umbrella project
for various open source initiatives
sponsored by Sun Microsystems and
is part of the java.net community.
Successful code and concepts may be
migrated to future versions of the Java
platform.
http://swinglabs.org

	 Everything that has come out of
SwingLabs – this is an absolutely fabu-
lous open source project that allows
skunk work–type development to occur
outside of the JCP that then gets rolled
back into the Java Standard Edition. It
has created superb frameworks like the
Timing framework to allow crisp and
elegant animation effects, the SwingX
project that has spawned fantastic new
widgets, and APIs including JXPanel
and the whole concept of painters, as
well as nice high-level work like the
data binding project to allow easy GUI
to data connectivity.

The Eclipse Rich Client Project
	 While the Eclipse platform is
designed to serve as an open tools
platform, it is architected so that its
components could be used to build
just about any client application.
The minimal set of plug-ins needed
to build a rich client application is
collectively known as the Rich Client
Platform.
http://wiki.eclipse.org/index.php/
Rich_Client_Platform

	 This is just an awesome technology
that allows Java developers to leverage
the core plumbings of Eclipse, namely
OSGi, SWT, JFace, and other frameworks,
to create their own desktop application.
It’s already being used very successfully
by a large number of clients and goes
from strength to strength, making it a
powerful way for people to build exten-
sible desktop applications. I think it has
the potential to really change the way
Java client applications are built.

The Java Web Start Improvements for
Mustang
	 Using Java Web Start technology,
standalone Java software applica-
tions can be deployed with a single
click over the network. Java Web Start
ensures the most current version of the
application will be deployed, as well as
the correct version of the Java Runtime
Environment (JRE).
http://java.sun.com/products/ja-
vawebstart/

	 One of the big, possibly only, reasons
why users today must suffer the poor
usability of “dumb” browsers is because
distributing and maintaining proper
client apps is difficult. HTML makes
this ridiculously easy and is a good
engineering solution, but one that offers
very poor end usability. JWS was always
the promised savior to allow desktop
distribution over HTTP but never really
lived up to its expectations in previous
releases. With the Mustang work now
it looks very, very good, though with
many of the dialogs simplified; better
looking; and it seems like it’s finally
going to allow first class, easy and pol-
ished large-scale distribution of Java
clients to help rejuvenate Java on the
desktop.

JDJ.SYS-CON.com56	 August 2006

Jason Bell
Contributing Editor

Head First Design Patterns by Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra (O’Reilly
Media)
	 Using the latest research in neurobiology, cognitive science, and learning theory, Head
First Design Patterns will load patterns into your brain in a way that sticks; in a way that
lets you put them to work immediately; in a way that makes you better at solving software
design problems, and better at speaking the language of patterns with others on your team.
www.oreilly.com

	 Without doubt the most effective book I have ever read and extremely easy to read. Don’t be
fooled by the comical light-hearted way this book looks. The chapter with the intro RMI is the best
I’ve ever come across. All the other design pattern books fade into the distance in my opinion.

NetBeans 5
	 NetBeans IDE 5.0 includes comprehensive support for developing IDE plug-in modules
and rich client applications based on the NetBeans platform. NetBeans IDE 5.0 is an open
source Java IDE that has everything software developers need to develop cross-platform
desktop, Web, and mobile applications straight out of the box.
www.netbeans.org

	 After a bit of a love/hate start with NetBeans I’ve now become a convert. It’s very easy to use
and the enterprise support is excellent. It would be nice to see coverage of the “other” app serv-
ers such as Orion and Resin but that’s a small price to pay. An excellent product.

A4 Journal and a Ballpoint Pen
	 For me everything starts on paper, whether it be sketch drawings and UML diagrams. I’ve
never mentioned it over the years but I’d be really lost without it. I’ve had the delight of look-
ing back through my journals of the past five years and seeing how I’ve developed and how
my ideas have developed with it.

Yakov Fain
Contributing Editor

Adobe Flex 2
	 Adobe Flex 2 is an application develop-
ment solution for creating and delivering
cross-platform Rich Internet Applications
(RIAs) within the enterprise and across
the Web. It enables the creation of expres-
sive and interactive web applications
that can reach virtually anyone on any
platform.
http://www.adobe.com/products/flex/

	 Adobe Flex 2 is a very potent player in the
Rich Internet Application arena. Flex 2 is a
direct competitor of Java Swing and AJAX.
It offers declarative programming and a
rich library of cool-looking and functional
components. Your compiled code runs in a
Flash 9 virtual machine. Flex 2 offers fast
protocols for data exchange with the server-
side components, server push, data binding,
easy integration with Java, JMS support, and
more. I was very impressed.

IntelliJ IDEA
	 IntelliJ IDEA is a Java IDE focused on
developer productivity. It provides a com-
bination of enhanced development tools,
including refactoring, J2EE support, Ant,
JUnit, and version controls integration.
http://www.jetbrains.com/idea/

	 This Java IDE is the best available today.
Despite the fact that it’s not free (the price is
very modest though), IntelliJ IDEA has a loyal
following of Java experts who can appreci-
ate the productivity gain this tool brings for
a small price. Finding classes, refactoring,
suggesting solutions, even a JavaScript editor
for AJAX warriors…everything is at your
fingertips. The upcoming version, 6.0, will
include a new UI Designer and Google Web
Toolkit support.

WebCharts 3D
	 WebCharts3D is a development toolkit
that offers flexibility for all aspects of rich-
client and Web-based charting requirements
and provides a single-source solution for
data visualization.
http://www.gpoint.com

	 This is one of the best charting components
available for Java applications. It’s easy to
learn and integrate with your Swing, JSP,
and JSF applications. The product provides
a rich set of charts, gauges, and maps, and
can generate not only binary streams but also
HTML, which makes it a good choice for AJAX
applications. For Web applications, deploy-
ment consists of adding one JSP and copying
one library to WEB-INF/lib.

57August 2006JDJ.SYS-CON.com

avaOne has a catalyzing effect on
Java developers: their enthusiasm
and energies spike around the
show; they ready their latest and
greatest Java technology–based

projects and solutions for the annual
encounter with software program-
mers from around the world. Take for
instance the JSR Spec Leads – they too
intensify their efforts around the show
to submit new JSRs to the program,
advance work under development to
the next stages, or finalize standards.
JavaOne is a favorite event with JSR
Spec Leads who don’t miss on the
opportunity to leverage the Confer-
ence as an ideal forum for sharing
their accomplishments and forays into
new Java standards projects with their
fellow developers. The show’s 2006
edition was no exception. Here are
the JSRs that brought the JCP Program
closer and closer to the 300 mark and
crossed it in less than a month.
	 Modularity in Java is tackled by JSR
294, Improved Modularity Support in
the Java Programming Language, led
by Gilad Bracha, Sun Microsystems.
The project sets out to extend the Java
programming language with new con-
structs that allow hierarchical modular
organization. The Spec Lead and
Expert Group expect these constructs
to be supported at the virtual machine
level, through modifications or exten-
sions to the JVM’s access control rules.
If you are interested in modularity in
Java, check out the JSR page, contact
the Spec Lead for more information, or
send your comments to jsr-294-com-
ments@jcp.org
	 Another JSR submitted around the
same time is JSR 295, Bean Bind-
ing. It aims to define an API that
greatly simplifies connecting a pair of
JavaBean properties to keep them in
sync. As proposed by the Spec Lead,
Scott Violet of Sun, the connection is
intended to be configurable with type

conversion and validation opera-
tions being able to be applied before
updating a property. Bean Binding will
be developed so that it reduces the
amount of tedious and error-prone
code JavaBean developers must write
by making additions to the JavaBeans
API that up-level connecting pairs of
JavaBean properties.
	 The May marathon of new JSR pro-
posals continued with JSR 296, Swing
Application Framework introduced by
Sun with Spec Lead Hans Muller at the
helm. This JSR commits to provid-
ing a simple application framework
for Swing applications. It will define
infrastructure common to most desk-
top applications. In so doing, Swing
applications will be easier to create.
The experts working on it anticipate
supporting implementations for cur-
rent Java releases as well as Java SE 7
(code name “Dolphin”).
	 The next JSR submitted at the time
of JavaOne is JSR 297, Mobile 3D
Graphics API 2.0, and is targeted at
Java ME. It was introduced by Nokia
and is shepherded by Spec Lead Tomi
Aarnio. The specification is a new revi-
sion of M3G (JSR-184), which plans to
expose the latest graphics hardware
features on high-end devices while
improving performance and memory
usage on the low end. The submission
of this JSR was prompted by the needs
of developers, device vendors, opera-
tors, and consumers who are looking
for richer, smoother, more realistic
graphics for games and user interfaces,
as the JSR page highlights that I recom-
mend you visit if you’re interested in
keeping abreast of the latest in the area
of Mobile 3D Graphics.
	 A relatively new member of the JCP,
SK Telecom Co. has already embarked
on developing a JSR for telematics, JSR
298, Telematics API for Java ME. The
proposal, currently under reconsidera-
tion ballot, sets out to define the API

set for Telematics Service on mobile
devices. A Java-based telematics
standard could facilitate the introduc-
tion of new value-add services related
to car management ranging from 911
emergency calling to complex driving
guidance. SK Telecom believes that by
providing a uniform API set designed
for embedded devices, the existing
telematics solutions and services can
be modified in a more interoperable
way and a variety of new Java-based
telematics services will emerge more
easily. If you are into telematics or
aspire to enter this field, check out the
JSR page and send your comments to
jsr-298-comments@jcp.org
	 An active participant of the JCP,
JBoss came forward around the same
time with a project that became JSR
299, Web Beans API. The Spec Lead is
Gavin King, a seasoned lead and expert
group participant, who will drive the
development of the specification to
accomplish a standard that unifies the
JSF managed-bean component model
with the EJB component model. The
result of this work is hoped to be a
significantly simplified programming
model for Web-based applications. The
specification promises at the end of
the standardization work to provide a
programming model suitable for rapid
development of simple data-driven
applications without sacrificing the
full power of the Java EE 5 platform.
If you’ve been following the evolution
of the EJB and persistence standards,
make sure you check out this proposal
too.
	 The JSR sprint continued after
JavaOne. LG Electronics submitted
DRM API for Java ME shortly after the
conference and with it the first JSR in
“the 300 series.” Dnyanesh R. Pathak,
the JSR Spec Lead and the supporting
Expert Group, will work to define an
optional package for developing Java
ME applications that utilize or interop-

JSR Watch

by Onno Kluyt

The JCP Program:
Beyond the 300 Mark

J

JDJ.SYS-CON.com58	 August 2006

erate with DRM agents that separately
exist in devices. The proposed JSR
commits to providing standardized
support for digital content protection
and management of the rights by en-
abling APIs to interact with the under-
lying DRM agent(s). Developers will be
able to use this JSR for interacting with
the DRM agents for developing ap-
plications that handle DRM-protected
content.
	 JSR 301, Portlet Bridge Specification
for JavaServer Faces from Oracle fol-
lowed in July, showing that there’s no
let up when it comes to Java develop-
ers’ enthusiasm and dedication to Java
technology even if it comes head-to-
head with heat waves or tempting
vacation plans. Michael Freedman
will lead this project, which attempts
to standardize the behavior of bridge
implementations to ensure true
interoperability for JavaServer Faces
artifacts. At the time of writing the JCP
Executive Committee (EC) still have to
vote this submission as a JSR, but once
it’s approved, if you want to participate
in its development I encourage you to
contact the spec lead.
	 The JSR EC ballot of July 24 will
carry two more interesting propos-
als. One is JSR 302, Safety Critical Java
Technology from The Open Group to
be led by Douglass Locke. The project
proposes to create a Java ME capabil-
ity, based on the Real-Time Specifica-
tion for Java (JSR-1). The proponents
argue that safety-critical systems need
a certifiable (e.g., DO-178B) Java en-
vironment. Certifiability implies hard
real-time resource management and
generally very small implementations
with low complexity. The existing Java
ME and RTSJ (JSR-1) specifications
contain too many and too complex
functions to render them certifiable.
For example, Java ME and the RTSJ
assume the presence of a garbage col-
lector; the proposed specification will

not assume the presence of a garbage
collector.
	 The other project on the bal-
lot is JSR 303, Bean Validation. The
specification intends to define a
metadata model and API for Ja-
vaBean validation and will not be
specific to any one tier or program-
ming model. The Spec Lead, Jason
Carreira, views this API as a general
extension to the JavaBeans object
model and as such expects it to be
used as a core component in other
specifications, such as JavaServer
Faces, Java Persistence API, and Bean
Binding. This standardized validation
metadata and standard validation
API will be valuable across a number
of application domains, from Swing
desktop applications to Web applica-
tions and the persistence layer. The
intention is also to deliver this JSR as
a component of Java SE 7 (code name
“Dolphin”) and develop an imple-
mentation of the spec as a public
open source project, either at java.net
community or the Apache Software
Foundation.
	 As I’m signing off, I’m doing a final
check of JSR submissions and, yes, a
new proposal has just come in, this
time a Java ME project from Motorola
and Ben Q Corporation, JSR 304,
Mobile Telephony API version 2. The
proponents plan to take this specifi-
cation beyond JSR 253 (Mobile Tele-
phony API) and include support for
some technologies such as VoIP. They
also intend to address some aspects
related to control of video telephony
sessions.
	 Forget the summer blues, Java
developers keep cool projects coming
– 11 new proposals in just a few weeks
– which merit keeping an eye on. Stay
tuned for more in “the 300 series.”

Onno Kluyt is director of the JCP Program at Sun

Microsystems and Chair of the JCP. onno@jcp.org

tool that struck the dual sweet spot of automating menial
work while enabling me to remain creative. Ever since then,
I’ve worked on EMF in my day job and never looked back.
	 Given my own evolving ideas, these days, even when I
hear “well considered” objections that sound all too simi-
lar to my own, I am quite certain that the value of model-
ing will slowly but surely become clear. It’s ultimately not
the modeling tools that are of the greatest value, but rather
the models themselves.

Ed Merks is co-lead of the top-level Eclipse Modeling Project as well as

the lead of the Eclipse Modeling Framework Project. He has many years

of in-depth experience in the design and implemention of languages,

frameworks, and application development environments. He has a PhD in

computing science and is a co-author of the authoritative Eclipse Modeling

Framework, A Developer’s Guide (Addison-Wesley, 2003). He works for IBM

Rational at the Toronto Lab.

– continued from page 6

AOP stands for aspect-oriented programming. It’s an inter-
esting concept that allows you to change the behavior of a
compiled application without changing its source code. For
example, you can implement a cross-cutting concern like
logging after the application was written and turn it on or
off as needed. AOP definitely will be used in some applica-
tions, but it’s not going to revolutionize programming as
OOP did 15 years ago.
	 The latest fashionable thing is AJAX – a self-proclaimed
savior of Web applications. You enter a letter in an HTML
search text field , and the results comes back without the
page refresh. Time will show if AJAX is the right solution for
Web 2.0, but many vendors are trying to make their tools
AJAX-enabled because it sells well today.
	 Meanwhile Java developers go crazy, because of this orgy
of 50+ Web frameworks that do the same thing as Struts.
	 During the last three to four years, lots of enterprise
mission-critical systems were moved from the Unix to the
Linux platform, and this trend will continue.
	 Ruby on Rails is heavily promoted by a group of en-
thusiasts. At this point it’s not clear if Ruby will become a
commercial programming language, or just another good
language such as Lisp or Smalltalk. I don’t know, but I’m
planning to purchase a book about this language.
	 Rich Internet Application are back; I’m talking about fat
clients here. The major players are Adobe Flex 2, Microsoft
WPF, and Java Swing with JWS, of course. This is an inter-
esting field to be in today.
	 What about us programmers? We have to keep learning
more and more buzzwords/tools/frameworks/languages
to become senior software developers…oops, I meant to
say architects. Why not developers? Because only architects
can possibly figure out how to put all these unrelated pieces
together.
	 I want back in the ’90s…seriously.

– continued from page 3

Unofficial History

Open Source Design Tools

59August 2006JDJ.SYS-CON.com

My Observations
[“RIA with Adobe Flex 2 and Java”
by Yakov Fain, Victor Rasputnis,
and Anatole Tartakovsky Vol. 11, issue 5]
	 I have been working both with Java Swing
and ActionScript while creating a GUI. Here
are my observations that defy your state-
ments in the article.
1.	“Imagine the amount of Java code you’d

need to write to achieve the same func-
tionality.” There are a number of Java XUL
implementations and Swixml is one of my
favorites.

2.	“...but we wouldn’t have to worry about
routing all events to the event-dispatch
queue.” In Java, you use listeners and
handler functions to attach to the GUI
events. Events are routed automatically.
Creating custom events in ActionScript
would take just as much effort as in
Java (or probably less, since it has
Observer,Observable and other utility
classes in the rt library, unlike Flash).

	 Now the drawbacks of using Flash (com-
ponents v.2) over Java:
1.	Flash components are badly written;

there are many undocumented bugs that
you would never overcome, e.g., try add-
ing a combobox to an accordion pane, or
a menu inside of a scrollpane. The most
awful truth about Flash components is
that they are badly integrated with one
another and putting them inside one
another will most likely result in some-
thing quite unpredictable (only frozen
layers from a component can be seen;
the focus frame cannot be set; dropdown
layers are displayed underneath another
nearby components, etc.)

2.	Flash components are closed source.
Even if you care to dig into the truth, you
wouldn’t risk changing anything because
the bug is in the layered structure of the
Flash drawing and there are some con-
straints on using the depths of those lay-
ers.

3.	There are no skins for different compo-
nents, and it’s unlikely that Adobe will
come up with something unbuggy in the
next release, since their main interest is
increasing the feature set and popular-
izing some visual benefits, but it’s hell for
programmers. (Some 4+ releases in my

history have proven that at least to me.).
4.	Flash has no threads, no thread man-

agement. If you start some calculation
or even a simple data manipulation or
object creation during some visualization
process, you get a freezer.

	 All the rest about the small size, video/au-
dio, Web integration, cross-platformedness
is true, but I wouldn’t use Flash in a project
with complex GUI.

—Vitaly Sazanovich

Vitaly,
	 Thank you for your feedback. Let me start
with one “platform” statement: Flex is the
application server solution with a service-
oriented client layer built on top of the Flash
Player.
	 Now, I’ll jump to the point where you started
agreeing with us and from there will walk
through the list of concerns all the way back.

4.	 “Flash has no threads, no thread manage-
ment.”
	 I find this rather hard to justify as it is.
	 Multithreading capabilities are imple-
mented in browsers as well as in the Flash
Player. You may question, however, the level
at which these capabilities are available to
a programmer. After all, the beauty of XML-
HTTPRequest is that it is asynchronous, isn’t
it? Otherwise we’d be saying JAX instead of
AJAX :). Similarly, the same asynchrony has
been available with Flash Remoting since
2002 or 2003, if I am not mistaken.
	 Let’s take your use case – “some calcula-
tion.” Must be something CPU worthy, I
guess. The question is where does it belong
in the distributed system, regardless of the
Swing/Flash debate. Perhaps on the server,
closer to data sources? Then, using the
remoting capability of Flex/Flash, I would
suggest a POJO running not only in a sepa-
rate thread, but also on a separate machine,
across the wire!
	 Now, just out of curiosity, let’s try to
play without the server, with Flash alone.
Here is another take: can you have another
“servant” application run by the Flash Player
within the same hosting HTML page? Can
you interop via the LocalConnection object
to invoke methods, pass parameters – all

with complete marshalling of complex data
types to native objects?
	 Wouldn’t it be happening in a different
thread?
	 Perhaps we can come to a more accurate
statement: there is no pre-emptive mul-
tithreading within a single Flash VM. This
might indeed be an issue if we had to take
distributed computing out of the picture.
	 But we don’t have to, do we?

3.	 “There are no skins for different components…”
	 This one is simpler. If you are, in fact, talk-
ing about Flex, which has a totally different
code base than Flash controls, the statement
is outright ungrounded. Flex controls sup-
port pretty advanced skinning, although my
fascination with the subject went south after
I skinned a couple of controls.
	 But then here’s another part: “…Ado-
be…main interest is in popularizing visual
effects…”

	 Well, this is one very popular illusion, I
might say. How about this answer: Adobe
Flex offers developers a JMS adapter that
enables them to create a producer or
consumer with one line of XML code? How
visual is that?

2.	 “Flash components are closed source…”
	 I have a secret to tell. Flex comes with full
sources. Look at them, step them through,
do whatever you please. Just don’t tell Adobe
I told you :). Seriously, are we sure we are
talking about the same products here?
	 Our article was about Flex.

1.	 “Flash components are badly written…”
	 If indeed we are both talking about Flex, I
find their components extremely well done.
Not that I doubt for a split second that you
can find a handful of cracks in each of them.
But, being an expert, you naturally see how
to avoid a problem – in another split second,
don’t you?
	 Also, now that you have the full source
code of the controls (you do, I kid you not),
what stops you from overriding any given
method and creating your own Accordion
or whatever? The Flex community and Flex
engineers are very friendly people who will
gladly accept and appreciate any good ideas
you might want to offer.

Feedback

Letters to the Editor

JDJ.SYS-CON.com60	 August 2006

Sun Adds Java DB and Swing Visual Designer to JDK and
Enters Next Phase for Java Platform Standard Edition 6
(Santa Clara, CA) – Sun Microsystems, Inc., has announced it
will be incorporating Java DB, the Sun supported distribution
of the open source Apache Derby Project, as well as the Group
Layout component from the NetBeans GUI Builder code-named
Project Matisse (https://swing-layout.dev.java.net/) into the
latest version of the Java(TM) Platform Standard Edition 6 (Java
SE 6) Java Development Kit (JDK). In addition, Sun announced
new agreements with Founder Technology Group and Lenovo
to ship the Java Runtime Environment (JRE) on their hardware.
	 The second Beta release of Java SE 6 technology is now avail-
able at http://java.sun.com/javase/6 . Developers are encour-
aged to begin their transition to the Java SE 6 platform and lever-
age the enhancements and expanded functionality of the latest
release. Scheduled for final release in the Fall of 2006, the Java SE
6 platform is the result of an industry-wide development effort
that involves open review, weekly builds, and extensive collabora-
tion between Sun engineers and over 330 external developers. In
addition, Sun announced the expansion of service programs for
Java SE 6 developers ranging from programming-specific advice
to enterprise support with its Sun Developer Expert Assistance
(DEA) Program and Sun Developer Service Plans (DSP).

QUALCOMM Java Solution Gains New Flexibility with
Multitasking Capability
(San Diego) –- QUALCOMM Incorporated, a developer and
innovator of Code Division Multiple Access (CDMA) and other
advanced wireless technologies, has announced that select
Mobile Station Modem (MSM) chipsets now support the concur-
rent execution of multiple Java applications. This multitasking
capability extends the existing features of the QUALCOMM
Virtual Machine (QVM) Java solution and delivers a seamless
experience to wireless users simultaneously running multiple
applications. The new multitasking capability is now available on
the MSM6500 solution, and will be available on select additional
chipsets thereafter.
http://www.qualcomm.com

BEA Announces WebLogic 9.2; Award-Winning Family Raises
the Bar on SOA Enablement
(San Jose, CA) – BEA Systems, a provider of enterprise infra-
structure software, has announced the general availability of
WebLogic Portal 9.2, WebLogic Server 9.2, and BEA Workshop
for WebLogic 9.2.
	 BEA WebLogic Portal 9.2 is a JEE-based enterprise portal server
that is designed to help simplify the production and management
of custom service-oriented portals. Among new tooling, federa-
tion, and community enhancements in WebLogic Portal 9.2 are
new dynamic, adaptive user interface capabilities with rich granu-
lar features such as enhancements for AJAX support and market-
leading support for Web Services for Remote Portlets (WSRP).
Combined, the upgraded portal is designed to provide greater
competitive advantage with increased flexibility to help adapt to
business changes and richer more responsive user interfaces.
www.bea.com

News

	

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails
to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the
cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are
acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by
the Publisher without notice. No conditions other than those set forth in this “General Conditions Document”
shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content of their
advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Pub-
lisher. This discretion includes the positioning of the advertisement, except for “preferred positions” described
in the rate table. Cancellations and changes to advertisements must be made in writing before the closing date.
“Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

	 Advertiser	 URL	 Phone	 Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

	 Quest	 www.quest.com/JavaCode		 2

	 Altova	 www.altova.com	 978-816-1600	 4

	 IBM	 ibm.com/takebackcontrol/flexible		 7

	 Intersystems	 www.InterSystems.com/Cache21P	 617-621-0600	 13

	 OPNET	 www.opnet.com/pinpoint	 240-497-3000	 15

	 SAP TECHED	 www.sapteched.com		 17

	 Fiorano	 www.fiorano.com/downloadsoa	 800-663-3621	 23

	 Cynergy	 www.cynergysytems/thatsme		 27

	 Backbase 	 www.backbase.com/jsf	 866-800-8996	 31

	 Tibco	 www.tibco.com/mk/gi	 800-420-8450	 35

	 Instantiations	 www.instantiations.com/rcpdeveloper	 800-808-3737	 43

	 RogueWave Software	 www.roguewave.com/developer/downloads		 47

	 Roaring Penguin	 www.roaringpenguin.com	 613-213-6599	 49

	 Real World Flex Seminar	 www.flexseminar.com	 201-802-3020	 53

	AJAXWorld Conference & Expo	 www.AjaxWorldExpo.com	 201-802-3020	 54, 55

	 Northwoods	 www.nwoods.com	 800-434-9820	 57

	LinuxWorld Conference & Expo	 www.LinuxWorldExpo.com		 61

	 SoftwareFX	 www.softwarefx.com		 63

	 Parasoft	 www.parasoft.com/JDJmagazine	 888-305-0041x3501	 64

JDJ News

JDJ.SYS-CON.com62	 August 2006

