
with Continuous Query Technology

Building

Real-Time-
Applications

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

JAVA DEVELOPER’S JOURNAL EDITORS’ CHOICE AWARDS PAPP GE 54

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2006

 JDJ.SYS-CON.COM VOL.11 ISSUE:8

No. 1 i-Technology Magazine in the World

SEE PAGES 54-55
FOR DETAILS

SANTA CLARA CONVENTION CENTER
W W W . A J A X W O R L D E X P O . C O M

OCT 3-4 2 0 0 6

JDJad-Quest-0506.indd 1 4/20/06 10:51:53 AM

	 want	back	in	the	’90s...seriously.	
Ten	years	ago	I	didn’t	know	Java:	
I’d	been	using	PowerBuilder	and	
was	able	to	program	pretty	much	

everything	in	this	RAD	object-oriented	
tool.	To	find	a	job	back	then,	all	I	needed	
to	have	on	my	résumé	was	PB,	a	single		
framework	(PFC),	and	SQL.	With	these	
skills	I	could	have		created	a	prototype	
of	a	rich	CRUD	client/server	application	
in	a	couple	of	days.	However,	that	was	
the	sunset	of	the	client/server	era.	
	 While	making	the	deployment	of	the	
client	software	easier,	the	Web	pushed	
the	user-facing	applications	years	
back.	Just	look	at	these	ugly	screens:	
several	plain	text	boxes,	a	dropdown,	
and	a	trivial	HTML	table.	Mainframe	
dumb	terminals	had	black	screens	
with	green	letters,	but	the	interaction	
with	the	big	iron	was	super	fast.	The	
Web	offered	a	white	background	with	
black	letters	and	poor	performance.	
But	the	entire	world	was	so	happy	with	
this	new	way	of	accessing	the	wealth	
of	data	and	tons	of	e-commerce	op-
portunities,	that	people	were	willing	
to	put	up	with	some	minor	inconve-
niences.	
	 GoF	had	released	a	famous	book	on	
design	patterns.	I	wonder	if	anyone	
has	read	this	manuscript	from	start	to	
finish?	This	book	was	the	first	step	in	
turning	programming	from	an	art	to	a	
trade.	Singleton,	MVC,	Factories,	value	
objects…just	pick	up	the	proper	design	
pattern(s),	and	your	code	will	look	as	if	
it	was	written	by	an	expert.	Don’t	forget		
to	comment	your	programs	explaining	
which	design	patterns	were	used	in	your	
code.	There	still	is	a	small	number	of	
programmers	who	get	by	without	pat-
tern	programming,	but	they’ll	be	extinct	
soon.
	 SQL	was	in	favor	in	the	’90s.	People	
knew	how	to	delete	duplicates	from	a	
database	table	by	applying	such	SQL	
clauses	as	group	by	and	having.	How	
many	people	have	read	the	book	by	Joe	
Celko,	SQL	for	Smarties?	Let	me	put	it	
another	way.	How	many	people	know	
what	SQL	is?	Why	bother,	Hibernate	
will	let	me	map	class	attributes	to	the	

database	table	columns.	How	nice…I’m	
drowning	in	XML	now.	Let’s	not	jump	
ahead	though;	mankind	did	not	know	
Hibernate	or	XML	back	then.
	 The	Java	programming	language	was	
born.	It	became	visible	as	a	language	for	
creating	applets,	but	it	quickly	aban-
doned	the	desktop	and	started	to	shine	
on	the	server	side.	It	took		Sun	almost	10	
years	to	realize	that	desktop	program-
ming	is	also	important	and	it’s	time	to	
create	a		Swing-based	RAD	tool.	
	 The	end	of	the	last	century	can	be	
called	the	Gold	Rush	of	Programming.	
People	started	to	spread	the	fear	of	Y2K	
issues.	Since	the	dates	were	stored	as	
two	digits,	some	nuclear	explosion	or	
a	less	serious	disaster	was	expected	on	
January	1,	2000.	For	example,	I’d	never	
include		“’96–’06”	in	the	title	of	this	ar-
ticle.	Why?	Because	06	minus	96	is	equal	
to	negative	10.	Get	it?	Lots	of	people	
quickly	became	programmers	with	the	
noble	mission	of	saving	mankind.	Lots	
of	IT	managers	quickly	climbed	the	
corporate	ladder	working	on	this	noble	
mission.	
	 In	the	beginning	of	the	new	century,	
XML	became	popular.	Yes,	it	was	a	nice	
way	to	describe	data,	but	at	the	same	
time	it	was	too	heavy.	It	did	not	manage	
to	kill	the	CSV	format	–	the	hype	is	over	
–	but	it	did	find	its	use	in	a	variety	of	
applications.
	 Microsoft	came	out	with	.NET	plat-
form,	which	became	a	direct	competitor	
of	J2EE.	These	two	mainstream	tech-
nologies	cover	most	of	the	enterprise	
software	development.
	 Another	important	trend	of	this	
century	is	the	spread	of	open	source	
software.	In	the	past,	vendors	used	to	
sell	software	licenses,	but	now	many	of	
them	give	the	software	away	for	free	and	
sell	services	instead.	The	documenta-
tion	of	our	open	source	product	may	be	
poor,	but	no	worries,	we’ll	be	happy	to	
help	you	with	our	great	tool	for	an	extra	
fee.
	 What	are	the	latest	notable	trends?	
Let	me	throw	in	a	couple	of	buzzwords.	
	

Editorial

Unofficial History of
Programming: ’96 – ’06

 Editorial Board

 Java EE Editor: Yakov Fain

 Desktop Java Editor: Joe Winchester

 Eclipse Editor: Bill Dudney

 Enterprise Editor: Ajit Sagar

 Java ME Editor: Michael Yuan

 Back Page Editor: Jason Bell

 Contributing Editor: Calvin Austin

 Contributing Editor: Rick Hightower

 Contributing Editor: Tilak Mitra

 Founding Editor: Sean Rhody

Production
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Research Editor: Bahadir Karuv, PhD

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution

Curtis Circulation Company, New Milford, NJ

For List Rental Information:

Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com

Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant

Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

I
By Yakov Fain

– continued on page 59

3August 2006JDJ.SYS-CON.com

Altova® UModel® 2006 – The starting point for successful software development.

UML is a trademark or registered trademark
of the Object Management Group, Inc. in the
United States and other countries.

Visualize works
of software art

Draw on UModel® 2006, and picture

better programs based on UML™.

Spied in UModel 2006 Release 2:
l Activity diagrams

l State machine diagrams
l Component structure diagrams

l Context-specific toolbars

Altova UModel 2006, the burgeoning new force

in the software design space, is the simple,

cost-effective way to draw on UML. Use

it to interpret or create your software

architecture. Decode Java or C#

programs into clear, accurate UML2

diagrams, or outline applications

and generate code from your plans.

With all major diagram types,

interoperability via XMI 2.1, and an

artful user interface, UModel makes

visual software design practical for

programmers and project managers

everywhere. Take the mystery out of UML!

Download UModel® 2006 today:
www.altova.com

UModel_JDJ.qxp 7/6/2006 11:30 AM Page 1

August 2006 VOLUME:11 ISSUE:8

contents

JDJ (ISSN#1087-6944) is published monthly (12 times
a year) for $69.99 by SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645. Periodicals
postage rates are paid at Montvale, NJ 07645 and

additional mailing offices. Postmaster: Send address
changes to: JDJ, SYS-CON Publications, Inc., 135

Chestnut Ridge Road, Montvale, NJ 07645.

Editorial

Unofficial History of
Programming: ’96–’06
by Yakov Fain

. .3
ViEwpoint

Where Are the High-Level Open
Source Design Tools?
by Ed Merks

. .6
MobilE JaVa

Integral Java: A Single Solution for
Bypassing the Pitfalls of
Split Stacks
The future of mobile Java

by John McCready

. .8

dMa

Detecting J2EE Problems Before
They Happen
Derived Model Analysis

by Alan West & Gordon Cruickshank

. . 	 .20

Sdo

Data Access Services
How to access relational data in terms of

Service Data Objects

by Kevin Williams & Brent Daniel

. .32
dESktop JaVa ViEwpoint

The Death of Mediocrity
by Joe Winchester

. .48

idE

Managing a Standardized Build
Process Outside of the Eclipse IDE
Point-and-click solutions won’t cut it

by Steve Taylor

. .50
awardS

JDJ Editors’ Choice Awards
. .56
JSr watch

The JCP Program:
Beyond the 300 Mark
by Onno Kluyt

. .58
FEEdback

Letters to the Editor
. .60

38by Gideon Low & Jags Ramnarayan

10
Jakarta Struts &
JavaServer Faces

by Heman Robinson

JDJ Cover Story Features

A Generic JMS Listener
for Apache Axis 1.x

by Parameswaran Seshan

28

5August 2006JDJ.SYS-CON.com

n	answer	to	the	question	“Where	are	the	
high-level	Open	Source	design	tools	for	
Java?”	I	believe	that	they’re	emerging	from	
efforts	at	Eclipse.org.	These	efforts	began	

with	the	Eclipse	Modeling	Framework	(EMF)	in	
2002,	and	have	been	building	momentum	ever	
since,	with	the	addition	of	the	UML2	project,	
the	Graphical	Modeling	Framework	(GMF),	the	
Generative	Modeling	Tools	(GMT)	Project,	and	
Model	Driven	Data	Integration	(MDDl).	More	
recently,	with	the	creation	of	the	new	top-level	
Eclipse	Modeling	Project	(http://www.eclipse.
org/modeling)	to	act	as	a	home	and	focal	point	
for	all	of	these	modeling	related	technologies,	
there	is	clearly	an	ever-growing	focus	in	this	
area.	So	what	does	it	all	mean	and	what’s	behind	
the	acronyms?
	 The	focus	of	the	Modeling	Project	is	on	bridg-
ing	the	design-versus-development	gap	using	a	
bottom-up	approach.	We’re	building	practical	
development	tools	and	frameworks,	evolving	
them	over	time,	and	using	them	ourselves	to	
build	the	subsequent	layers	of	the	onion.	
	 For	example,	given	just	an	XML	Schema	as	
input,	EMF	and	GMF	can	generate	a	fully	func-
tional	graphical	application	ready	to	be	tailored	
and	specialized.	Furthermore,	since	the	genera-
tor	technology	supports	merging,	a	developer	
can	switch	between	modeling	and	hand-coding.	
This	is	essential	for	the	adoption	of	high-level	
tools	by	a	community	that	likes	to	view	them	
as	a	dimmer	switch	it	can	adjust	to	suit	various	
skill	levels,	rather	than	“all	dark”	or	“all	light”	
tools	that	replace	hand-coding.	And	since	the	
model	can	be	specified	in	the	form	of	annotated	
Java	(which	the	generator	produces	to	support	
round-tripping)	it’s	possible	for	a	developer	to	
work	completely	in	Java	without	buying	into	the	
whole	sales	pitch	of	the	model-driven	approach.	
	 We	validate	these	ideas	by	eating	our	own	dog	
food:	EMF	models	are	used	extensively	through-
out	the	Modeling	Project,	and	many	of	our	tools	
are	based	on	EMF-generated	editors.	Now,	with	
GMF	maturing,	we’re	beginning	to	use	it	as	the	
basis	for	more	sophisticated,	user-friendly	tools.
	 The	Eclipse	modeling	tools	are	trying	to	ap-
peal	to	as	broad	a	target	audience	as	possible	by	
supporting	many	different	development	styles,	
something	that	hasn’t	occurred	in	the	past	and	
that,	hopefully,	will	dispel	the	myth	that	model-
ing	and	coding	are	mutually	exclusive	or	just	
rigid	one-way	processes.
	 I	believe	the	main	stumbling	blocks	to	accep-
tance	of	design	tools	have	been	the	rigidity	and	

complexity	of	the	methodology	itself	and	the	
poor	quality	of	the	artifacts	that	they	generate.	
To	address	the	former	issue,	the	Eclipse	model-
ing	tools	have	focused	on	building	exemplary	
support	around	a	very	simple	core	model	rather	
than	around	something	much	more	complex.	
To	address	the	latter	issue,	we’ve	focused	on	
producing	code	of	handwritten	quality.	If	a	tool	
doesn’t	produce	high-quality	code,	language-flu-
ent	developers	will	often	reject	it.
	 To	understand	the	target	audience	for	model-
ing	tools,	I	often	relate	back	to	my	own	experi-
ences	and	how	my	thinking	has	evolved	over	the	
years.	When	I	was	first	exposed	to	MOF	(Meta	
Object	Facility),	I	didn’t	know	how	to	read	UML	
diagrams,	so	I	was	immediately	convinced	that	
they	were	a	useless	diversion.	“What’s	wrong	with	
plain	old	Javadoc?”	Then,	I	looked	at	the	gener-
ated	code,	and	I	was	immediately	convinced	that	
it	was	too	verbose	and	inefficient	to	be	of	any	
use	at	runtime.	“I’d	never	write	such	garbage	by	
hand!”	And,	when	forced	to	learn	the	meta-model	
itself,	I	was	immediately	convinced	that	it	was	full	
of	extraneous	baggage.	“Who	needs	all	this	stuff?”
	 Despite	my	“well	considered”	objections,	I	con-
tinued	to	use	MOF	in	my	day	job	and	had	much	
time	to	reconsider.	Having	learned	to	read	a	class	
diagram,	it	didn’t	take	long	to	be	convinced	of	the	
cliché	“a	picture	is	worth	a	thousand	words.”	It	
also	became	clear	that	if	it’s	silly	to	draw	a	picture	
of	a	labeled	box	containing	a	labeled	feature,	it’s	
even	sillier	to	write	by	hand,	possibly	thousands	
of	times,	an	interface	with	a	getter,	a	setter,	an	
implementation	class	with	the	same	things	as	
well	as	a	field	to	store	the	data,	and	last	but	not	
least,	a	factory	method	to	create	the	instance.	All	
of	this	is	menial	work	that’s	beneath	the	skilled	
developer.	Ironically,	the	very	simplicity	of	the	
diagrams	that	made	them	seem	silly	is	precisely	
where	their	value	lies.
	 The	code	being	generated	was	of	poor	ma-
chine-written	quality,	but	it	quickly	became	clear	
that	this	could	easily	be	addressed	by	producing	
simple,	clean	code	that	looked	exactly	like	I’d	
write	by	hand.	For	example,	a	getter	need	not	do	
anything	more	than	return	the	value	of	a	variable.	
And,	by	using	a	template-based	approach,	we	
could	provide	flexibility	and	control	to	any	de-
veloper,	letting	him	tailor	what’s	produced	by	the	
generator	to	fit	his	specific	needs	or	tastes.	Add	
to	this	a	generator	that	can	merge	its	output	with	
existing	code,	and	you	reach	my	tipping	point:	a	

ViEwpoint

Where Are the High-Level
Open Source Design Tools?

President and CEO:

 Fuat Kircaali fuat@sys-con.com

Group Publisher:

 Jeremy Geelan jeremy@sys-con.com

Advertising

Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com

 Robyn Forma robyn@sys-con.com

Advertising Sales Manager:

 Megan Mussa megan@sys-con.com

Associate Sales Managers:

Kerry Mealia kerry@sys-con.com

Lauren Orsi lauren@sys-con.com

Editorial

Executive Editor:

 Nancy Valentine nancy@sys-con.com

Production

Lead Designer:

 Louis F. Cuffari louis@sys-con.com

Art Director:

 Alex Botero alex@sys-con.com

Associate Art Directors:

 Abraham Addo abraham@sys-con.com

 Tami Lima tami@sys-con.com

Web Services

Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:

 Stephen Kilmurray stephen@sys-con.com

 Wayne Uffleman wayne@sys-con.com

Accounting

Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:

 Betty White betty@sys-con.com

Accounts Receivable:

 Gail Naples gailn@sys-con.com

 Customer Relations

Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

JDJ Store Manager:

 Brunilda Staropoli bruni@sys-con.com

by Ed Merks

I

– continued on page 59

JDJ.SYS-CON.com6 August 2006

ava,	in	the	form	of	the	Java	2	
Platform	Micro	Edition	(J2ME),	
has	become	a	prerequisite	for	all	
future	mobile	handsets	for	at	least	
the	next	seven	to	nine	years.	Not	

only	will	the	core	applications	needed	
for	the	user	experience	be	created	in	
Java,	it	will	also	serve	as	the	basis	for	
the	lucrative	downloadable	applica-
tion	market	–	the	Java	segment	of	
which	is	currently	projected	to	exceed	
$15	billion	by	2008.
	 If	there	are	any	remaining	questions	
as	to	the	pivotal	role	Java	is	destined	to	
play	in	the	mobile	industry,	consider	
the	following	numbers.	By	mid-2006,	
the	installed	base	of	Java	enabled	
handsets	will	cross	the	billion-unit	
mark,	with	over	35	vendors	already	
offering	upwards	of	600	different	Java-
enabled	handset	models.	Furthermore,	
over	four	million	software	develop-
ers,	per	3G	Americas’	estimates	in	
mid-2005,	are	now	involved	in	creating	
J2ME-specific	software	to	feed,	as	well	
as	fuel,	this	burgeoning	demand	for	
Java-based	functionality	for	mobile	
handsets.
	 Despite	all	of	these	inescapable	
positives,	handset	manufacturers	are	
still	facing	a	major	challenge	on	the	
Java	front.	Their	approach	to	provid-
ing	Java	capability	on	handsets	has	
become	passé	–	plagued	by	inef-
ficiencies,	fraught	with	application	
integration	complications,	and	above	
all,	vulnerable	to	security	risks.	All	of	
these	problems	stem	from	the	fact	that	
manufacturers	never	set	out	to	fully	
and	tightly	integrate	the	necessary	Java	
platform	[i.e.	J2ME]	with	the	native	
handset	OS	kernel,	the	handset	en-
gines/codecs,	and	the	native	libraries.	
With	this	two-stack	approach,	there	

exists	a	native	stack	with	its	own	set	
of	exposed	APIs.	Then,	there’s	the	Java	
stack,	with	exposed	APIs	also	grafted	
atop	the	native	stack.
	 In	short,	the	two-stack	approach	
offers	a	seriously	flawed	foundation	
unsuitable	to	support	a	Java	future.
	 Yet,	groundbreaking	developments	
have	been	taking	place	and	a	much	
better	way	to	implement	mobile	
Java	has	emerged,	one	that	permits	
handset	makers	to	overcome	all	of	the	
problems	associated	with	the	con-
ventional	two-stack	approach.	With	
this	new	platform,	manufacturers	can	
provide	developers	with	a	single-stack	
that	supports	all	the	strategic	Java	
APIs,	while	providing	the	necessary	
access	to	the	native	engines,	codecs,	
and	libraries	via	the	Java	APIs.	It’s	a	real	
win-win	solution	without	any	limita-
tions	or	drawbacks.

The Conventional Two-Stack
Approach to Java
	 In	2001,	handset	makers	were	con-
fronted	with	the	need	to	support	Java,	
primarily	to	accommodate	download-
able	Java	applications.	At	that	juncture,	
the	native	handset	OS	(Symbian),	
the	OS	services,	and	middleware	
(access	to	the	handset	engines	and	
codecs),	the	handset	services	(phone	
settings),	handset	application	(Web	
browser),	and	the	native	libraries	were	
all	being	developed	in	C.	Rather	than	
making	any	changes	to	this	native	
infrastructure	to	tightly	integrate	Java,		
manufacturers	opted	instead	to	create	
a	host-porting	layer	on	top	of	their	na-
tive	libraries	as	the	basis	of	their	Java	
support.
	 A	Java	KVM	was	then	implemented	
on	top	of	the	host-porting	layer,	where	

a	KVM	is	a	J2ME-specific	subset	of	a	
Java	virtual	machine	(JVM).	This	KVM	
then	served	as	the	platform	for	Java	
libraries,	with	their	Java	APIs.	Suffice	it	
to	say,	this	was	not	a	very	efficient	way	
to	realize	Java.	The	two-stack	approach	
compromises	Java	performance,	
compounds	application	integra-
tion	complexity,	and	at	a	minimum	
doubles	the	amount	of	software	test-
ing	(and	quality	assurance)	that	has	to	
be	performed.	All	of	that,	bad	enough	
as	it	is,	is	not	the	limit	of	the	pitfalls	
associated	with	this	approach.
	 This	two-stack	approach,	with	
native	APIs	exposed	to	all,	is	also	
an	unmitigated	security	nightmare.	
Access	to	the	native	APIs,	as	manu-
facturers	and	operators	are	acutely	
aware	of,	enables	hackers	to	easily	
create	malicious	viruses,	worms,	and	
spyware.	Thus,	the	current	goal,	across	
the	industry,	is	to	try	to	restrict	access	
to	the	native	APIs.	However,	with	the	
two-stack	approach	it’s	difficult	to	
restrict	access	to	the	native	APIs	since	
bona	fide	developers	have	to	use	these	
APIs	to	interact	with	libraries,	codecs,	
and	engines.		
	 Fortunately,	a	new	single-stack	
approach	provides	an	elegant	and	uni-
versal	solution	to	this	security	problem	
as	well	as	all	the	other	complexity	and	
inefficiency-related	issues	associated	
with	two	stacks.

The Single-Stack Java Solution
	 With	a	single-stack	platform,	hand-
set	makers	no	longer	have	to	expose	
their	native	APIs	to	the	software	
development	community-at-large.	
Software	developers	can	instead	use	
one	set	of	strategic	broad-spectrum	
Java	APIs	for	all	of	their	needs	includ-

MobilE JaVa

by John McCready

Integral Java: A Single Solution for
Bypassing the Pitfalls of Split Stacks

J

A new single stack platform, one set of APIs for everything,
and the future of mobile Java

John McCready is

senior vice-president of

marketing for SavaJe

Technologies, developers

of the most advanced Java

technology-based mobile

operating platform. The

SavaJe-based Jasper S20

mobile phone was named

“Device of the Show”

at the 2006 JavaOne

Conference. The SavaJe

Mobile Platform radically

simplifies and acceler-

ates the development of

highly customizable, richly

branded, and secure user

interfaces across mobile

feature phone handsets.

JDJ.SYS-CON.com8 August 2006

ing	that	of	accessing	the	handset’s	
native	engines	and	codecs.	The	graphs	
below	illustrate	how	the	single-stack	
approach	markedly	differs	from	the	
conventional	two-stack	approach	that	
manufacturers	have	been	employing.
	 To	ensure	that	software	develop-
ers	gain	uncompromised	access	
to	everything	they	need	on	the	
handset	using	just	Java	APIs,	the	
single-stack	platform	goes	well	
beyond	just	implementing	the	basic	
amount	of	functionality	required	to	
be	J2ME-compliant.	Unlike	Java	2	
Enterprise	Edition	(J2EE)	and	Stan-
dard	Edition	(J2SE)	–	where	there’s	
only	one	version	of	the	platform	
–	J2ME	(as	shown	in	Figure	2)	has	
two	variants	known	as	configura-
tions.	The	Java	functionality	avail-
able	with	each	of	the	two	configu-
rations	is	defined	in	terms	of	the	
core	libraries	to	be	included	with	
that	configuration	as	well	as	by	
the	capabilities	of	the	Java	virtual	
machine	associated	with	it.
	 The	two	different	J2ME	configura-
tions	are:
1.	Connected	Limited	Device	

Configuration	(CLDC),	and
2.	Connected	Device	Configuration	

(CDC).

	 CDLC,	as	noted	by	the	“limited”	
in	its	name,	is	meant	for	low-cost,	
limited-function	devices,	while	CDC	
is	for	more	sophisticated	mobile	
devices.	CLDC,	as	shown	in	Figure	
2,	can	be	implemented	with	a	KVM	
(alimited	function	subset	of	a	JVM),	
while	CDC,	in	common	with	J2EE	
and	J2SE,	requires	a	full	JVM.	Thus,	
CDC,	from	the	get-go,	has	more	in	
common	with	mainstream	Java	than	
CDLC	does.
	 CLDC	and	CDC,	as	again	shown	in	
Figure	2,	have	so-called	profiles	imple-
mented	on	top	of	the	configurations.	
These	profiles	define	the	requisite	
Java	software	functionality	and	the	
API	repertoire	for	a	specific	class	of	
device.	At	present	there	are	two	key	
profiles	defined	for	J2ME:	the	Mobile	
Information	Device	Profile	(MIDP)	
and	Personal	Profile	(PP).	MIDP	(now	
at	version	2.0),	which	is	to	be	used	
with	CLDC,	defines	basic	connectivity,	
persistent	storage,	networking,	and	
user	interface	functionality.	MIDP	is	
targeted	at	low-end	handsets.	On	the	
other	hand,	PP,	meant	to	be	used	with	
CDC,	is	for	high-end	devices,	includ-
ing	PDAs.

	 The	single-stack	platform	imple-
ments	both	CDC	as	well	as	CLDC/
MIDP2.0.	It	thus	provides	software	
developers	with	a	complete	set	of	
J2ME	APIs	that	is	more	comprehen-
sive,	feature-rich,	and	powerful	than	
the	APIs	available	with	just	MIDP.	This	
is	the	crux	of	the	solution.	Thanks	to	
the	availability	of	this	expanded	set	of	
Java	APIs,	software	developers	are	no	
longer	as	dependent	on	native	APIs	
as	they	previously	were.	Now	they	can	
use	Java	APIs	for	all	needs,	whether	
it’s	to	develop	core	handset	utilities	or	
value-added,	downloadable	applica-
tions.
	 The	advantages	of	this	single-stack	
approach	are	many	and	obvious,	posi-
tively	benefiting	not	just	the	handset	
makers	but	also	developers,	operators,	
service	providers,	and	even	users.	The	
key	advantages	of	the	single-stack	ap-
proach	include:
•	 Reduction	in	development	and	test-

ing	costs	by	reduced	
software	duplication	
and	complexity;

•	 Major	improvement	
in	software	security,	
greatly	minimizing	the	
disruptive	threats	of	
viruses	and	spyware,	
by	obviating	the	need	
for	exposed	native	
APIs;

•	 Simplifying	the	data	
sharing	between	
applications	(chat	and	
address	book)	through	
the	use	of	common	
APIs	and	libraries;

•	 Standardization	on	
Java,	without	the	need	
to	flip-flop	between	
Java	and	native	code,	
thus	promoting	the	
creation	of	a	more	con-
sistent	and	cohesive	
user	experience;

•	 Reducing	development	
and	testing	schedules,	
expediting	overall	
time-to-market;

•	 Tangible	increases	in	
Java	performance	by	
tighter	integration	with	
the	OS	kernel	(without	
using	an	intermediary	
host	porting	layer).

The Bottom Line
	 Java	has	become	a	
mandatory	prerequisite	

for	future	handsets.	The	conventional	
approach	of	implementing	Java	as	a	
separate	stack	grafted	on	top	of	the	
native	libraries	via	a	host-porting	layer	
is	fraught	with	problems	–	security,	
performance,	and	inefficiency	being	
key	among	these.	The	new	single-
stack	platform,	which	with	a	stroke	
implements	both	J2ME	CDC	and	
CLDC/MIDP2.0,	eliminates	all	of	the	
problems	associated	with	the	two-
stack	approach.	Rather	than	having	to	
contend	with	multiple	stacks,	with	two	
competing	sets	of	APIs,	the	single-
stack	approach	provides	one	unified	
stack	with	one	set	of	APIs.	By	reducing	
software	duplication	and	complex-
ity,	this	new	approach	reduces	costs,	
expedites	time-to-market,	enhances	
security,	enforces	consistency,	and	
increases	performance.	It,	in	reality,	
is	the	only	way	to	go	forward	when	it	
comes	to	J2ME	on	mobile	handsets.	
Period.			

 Figure 1 An all-encompassing single-stack approach eliminates, at a stroke, all the inefficiencies, complexities, dupli-

cation, and security concerns associated with the conventional two-stack approach.

 Figure 2 In contrast to J2EE and J2SE where there are only one version of the platform, J2ME comes in two variants

known as configurations

9August 2006JDJ.SYS-CON.com

previous	article	compared	Jakarta	Struts	and	
JavaServer	Faces	implementations	of	five	simple	de-
sign	patterns	for	list	selection.	(JDJ,	Vol.	11,	Issue	3).
					Long	lists	and	ordered	selections	require	a	more	
complex	design	pattern.	This	pattern	displays	

available	items	in	one	list	and	chosen	items	in	another	so	the	
user’s	choices	are	always	visible	and	easily	modified.
	 This	design	pattern	is	commonly	called	a	Dual	List	or	Dual	
Listbox	selector.	It	is	also	known	as	the	Selection	Summary	or	
List	Builder	pattern.	In	the	Java	Look	and	Feel	Design	Guide-
lines,	it’s	called	the	Add-and-Remove	pattern:
	 Typical	Struts	implementations	of	this	pattern	require	JSPs,	
Java,	and	JavaScript.	JavaServer	Faces	doesn’t	need	JSPs,	but	
they’re	used	here	for	easy	comparison.
	 Listing	1	shows	the	JSP	for	Struts	and	Listing	2	shows	the	
JSP	for	JavaServer	Faces.	Complete	code	listings	for	the	back-
ing	beans,	config	files,	and	other	code	for	all	six	list	selection	
patterns	can	be	downloaded	from	the	JDJ	Web	site.

Jakarta Struts Implementation
	 Using	Jakarta	Struts,	the	JSP	for	this	pattern	defines	a	table	
layout	with	three	columns.	In	the	first	and	third	columns,	the	
Available	and	Chosen	lists	are	implemented	using	the	Struts	
tags	<html:select>	and	<html:optionsCollection>.	For	inter-
nationalization,	the	labels	can	use	the	<fmt:message>	tag	
from	the	JavaServer	Pages	Standard	Tag	Library.	Many	people	
find	Struts	and	JSTL	tags	a	powerful	combination.

<table border=”0” cellpadding=”0” cellspacing=”5”>

 <tr align=”middle” valign=”center”>

 <td>

 <fmt:message key=”titles.available”/>

 <html:select property=”availableValues”

 multiple=”true” size=”7”

 style=”width:80px;” styleId=”available”

 onchange=”doUpdate(false, true);”>

 <html:optionsCollection

 property=”availableList”/>

 </html:select>

 </td>

 ...

 <td>

 <fmt:message key=”titles.chosen”/>

 <html:select property=”chosenValues”

 multiple=”true” size=”7”

 style=”width:80px;” styleId=”chosen”

 onchange=”doUpdate(true, false);”>

 <html:optionsCollection

 property=”chosenList”/>

 </html:select>

 </td>

 </tr>

</table>

	 The	form	bean	contains	the	“availableList,”	“availableVal-
ues,”	“chosenList,”	and	“chosenValues”	properties	used	in	the	
JSP.

private List availableList = new ArrayList();

private String[] availableValues = new String[0];

private List chosenList = new ArrayList();

private String[] chosenValues = new String[0];

 ...

public List getAvailableList()

public void setAvailableList(List list)

public String[] getAvailableValues()

public void setAvailableValues(String[] list)

public List getChosenList()

public void setChosenList(List list)

public String[] getChosenValues()

public void setChosenValues(String[] list)

 ...

	 The	“availableList”	and	“chosenList”	properties	store	the	
lists	of	available	values	as	LabelValueBeans.	The	“availableV-
alues”	and	“chosenValues”	properties	store	the	selected	
values	as	arrays	of	Strings.
	 For	the	Add-and-Remove	pattern,	these	selected	values	are	
of	no	interest.	We	don’t	have	to	tell	the	server	which	values	
are	selected	but	which	items	appear	in	the	list	contents.	

A

Jakarta Struts &
JavaServer Faces
The add-and-remove pattern

by Heman Robinson

JDJ.SYS-CON.com10 August 2006

However,	when	forms	are	submitted,	list	contents	don’t	get	
sent	back	to	the	server;	only	their	selected	values	do.	This	is	
usually	the	most	efficient	way	to	process	forms,	but	for	this	
design	pattern	it’s	a	problem.
	 There	are	several	ways	to	solve	this	problem.	One	
way	is	to	submit	the	form	every	time	the	list	contents	
change.	This	produces	excess	screen	refreshes	and	
network	traffic.	Another	way	is	to	use	AJAX	technology	
to	communicate	with	the	server.	This	reduces	screen	
refreshes,	but	still	generates	network	traffic.	There’s	no	
need	to	generate	network	traffic	until	the	user	com-
pletes	their	changes.
	 The	best	solution	is	to	store	the	selected	values	in	a	hid-
den	control.	This	way	the	values	get	sent	back	to	the	server	
only	once,	when	the	form	is	submitted.	It’s	sufficient	to	store	
only	the	chosen	values;	changes	to	both	lists	can	be	derived	
from	them.	In	this	example,	we’ll	store	the	chosen	values	as	a	
delimited	string	in	a	hidden	text	field.	
	 Using	this	hidden	field,	the	buttons	in	the	middle	column	
can	be	implemented	as	follows:

<td>

 <input type=”button” style=”width:100px;”

 id=”add” onclick=”

 doMove(‘available’, ‘chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=

 “doMove(‘available’, ‘chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;”

 id=”remove” onclick=

 “doMove(‘chosen’, ‘available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=

 “doMove(‘chosen’, ‘available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 <html:hidden styleId=”chosenItem”

 property=”chosenItem” />

</td>

	 The	buttons	are	implemented	using	standard	HTML	<in-
put>	tags.	The	<html:hidden>	field	stores	the	chosen	items	
as	a	delimited	string.	The	items	are	stored	by	invoking	the	
JavaScript	“doMove()”	function,	which	performs	all	four	of	
the	button	actions:

/**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

function doMove(sourceId, destId, all)

{

 // Move the items between the lists.

 var sourceElem =

 document.getElementById(sourceId);

 var destElem =

 document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text =

 sourceElem.options[i].text;

 newOption.value =

 sourceElem.options[i].value;

 destElem.options[destElem.length] =

 newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate(false, false);

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“chosenItem”);

 var chosenList =

 document.getElementById(“chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

}

	 Besides	implementing	the	button	actions,	it	eases	the	us-
ers’	learning	curve	to	disable	these	actions	when	they	don’t	
make	sense.	For	example,	when	there	are	no	selected	items,	
the	“Add”	and	“Remove”	buttons	can’t	be	used.	When	the	
available	list	or	chosen	list	is	empty,	the	“Add	All”	or	“Remove	
All”	button	can’t	be	used.
	 The	“doUpdate()”	function	enables	or	disables	the	but-
tons	based	on	the	user’s	selections	and	the	list	contents.	

“JSF provides a natural
migration path
for projects moving
from Struts”

11August 2006JDJ.SYS-CON.com

FEaturE

The	“doUpdate()”	function	is	invoked	from	the	“doMove()”	
function	above	as	an	“onchange”	handler	for	the	lists,	and	as	
an	“onload”	handler	in	the	<body>	tag	to	initialize	the	button	
states.

/**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested to ensure

 * at most one list contains selections.

 * <p>

 * @param offAvailable deselect available list

 * @param offChosen deselect chosen list

 */

function doUpdate(offAvailable, offChosen)

{

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“available”);

 var chosenList =

 document.getElementById(“chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

}

	 Using	these	JavaScript	functions,	list	contents	are	correctly	
updated	and	the	user’s	chosen	items	are	stored	in	the	hidden	
field.	When	the	form	is	submitted,	the	user’s	“chosen”	list	is	
read	from	the	hidden	field.	In	this	example,	it’s	used	to	re-
populate	both	lists	to	reflect	the	user’s	choices.	
	 Lists	are	re-populated	by	using	the	“languageList”	in	the	
form	bean.	This	is	a	constant	list	containing	all	possible	
choices.	The	“move”	method	of	the	form	bean	manipulates	
the	“available”	and	“chosen”	lists	based	on	the	contents	of	the	
hidden	“chosenItem”	field.

private List languageList = new ArrayList();

private String chosenItem = “”;

 ...

public List getLanguageList()

public void setLanguageList(List list)

 Figure 1 Add-and-remove pattern

 Figure 2 Enabled and disabled buttons

JDJ.SYS-CON.com12 August 2006

You program in Java,
but still use a relational database.

Try an innovative database for free: Download a fully functional, non-expiring copy of Caché, or request it on CD, at www.InterSystems.com/Cache21P
© 2006 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 7-06 CacheInno21JDJ

Unlike relational databases, Caché is a perfect match as the back end for object-
oriented programming. It’s the world’s fastest object database, and runs SQL queries
up to 5 times faster than relational databases. Plus, with an innovation by InterSystems
called Jalapeño™, Caché persists Java objects without relational mapping – reducing
development time for Java programmers by as much as 40%.

Caché delivers massive scalability on minimal hardware, requires little administration,
and incorporates a rapid Web application development environment. It’s available for
Unix, Linux, Windows, Mac OS X, and OpenVMS – and is deployed on more than
100,000 systems ranging from two to over 50,000 users.

We are InterSystems, a global software company with a 28-year track record of
innovations that enrich applications.

There’s something wrong with this picture.

Back end:
Relational database

Front end:
Object-oriented programming

CacheInno21 JDJ.qxp 7/13/06 8:35 PM Page 1

FEaturE

public String getChosenItem()

public void setChosenItem(String items)

public void move(List sourceList,

 String[] sourceValues, List destList)

 ...

	 The	“languageList”	and	“chosenItem”	fields	and	the	
“move”	method	are	accessed	from	the	“execute”	method	of	
the	form’s	submit	action.	In	the	Struts	implementation,	this	is	
an	instance	of	the	Struts	Action	class.	

/**

 * Populate the lists from the hidden field.

 * <p>

 * @param mapping action mapping

 * @param form action form

 * @param request HTTP servlet request

 * @param response HTTP servlet reponse

 * @throws Exception

 */

public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

{

 // Populate available list from language list.

 ExampleForm eForm = (ExampleForm)form;

 eForm.getAvailableList().clear();

 eForm.getAvailableList().addAll(

 eForm.getLanguageList());

 // Populate chosen list from hidden field.

 eForm.getChosenList().clear();

 eForm.move(eForm.getAvailableList(),

 eForm.getChosenItem().split(“\\|”),

 eForm.getChosenList());

}

JavaServer Faces Implementation
	 What	is	needed	to	implement	this	design	pattern	in	
JavaServer	Faces?	JSF	is	designed	by	some	of	the	same	people	
who	designed	Struts	so	we	hope	for	a	smooth	migration	path.
	 In	JavaServer	Faces,	the	JSP	for	the	two	lists	is	smaller,	because	
JSF’s	tags	are	more	compact.	Instead	of	<table>,	<tr>,	and	<td>,	
JSF	uses	<h:panelGrid>.	Instead	of	<fmt:message>,	JSF	uses	<h:
outputText>.	Instead	of	<html:select>	and	<html:optionsCollec-
tion>,	JSF	uses	<h:selectManyListbox>	and	<f:selectItems>.

<h:panelGrid columns=”3” rowClasses=”center”>

 <h:outputText value=”#{bundle.available}” />

 <h:outputText value=”” />

 <h:outputText value=”#{bundle.chosen}” />

 <h:selectManyListbox style=”width:100px; height:120px;”

 id=”available” value=”#{example.availableValues}”

 onchange=”doUpdate(false, true);”>

 <f:selectItems value=”#{example.availableList}”/>

 </h:selectManyListbox>

 ...

 <h:selectManyListbox style=”width:100px; height:120px;”

 id=”chosen” value=”#{example.chosenValues}”

 onchange=”doUpdate(true, false);”>

 <f:selectItems value=”#{example.chosenList}”/>

 </h:selectManyListbox>

</h:panelGrid>

	 As	in	the	Struts	implementation,	the	<h:selectManyList-
box>	tags	refer	to	the	“availableList,”	“availableValues,”	
“chosenList,”	and	“chosenValues”	properties	of	the	backing	
JavaBean.	The	interfaces	for	these	properties	are	identical	to	
the	Struts	implementation.	Internally	the	Struts	Bean	stores	
List	properties	as	LabelValueBeans,	while	the	JSF	Bean	stores	
them	as	SelectItems.	
	 Like	the	Struts	implementation,	the	four	buttons	in	the	
middle	column	are	implemented	with	standard	HTML	<in-
put>	tags.	For	JSF	these	have	to	be	enclosed	in	<f:verbatim>	
tags.	Other	than	that,	the	buttons	are	almost	identical	with	
the	Struts	implementation.	The	only	wrinkle	is	that	JSF	gen-
erates	hierarchical	element	identifiers.	That’s	why	JavaScript	
for	JSF	often	contains	identifiers	like	those	with	the	“form:”	
prefix	in	the	code	below.

<h:panelGrid columns=”1”>

 <f:verbatim>

 <input type=”button” style=”width:100px;”

 id=”add” onclick=

 “doMove(‘form:available’, ‘form:chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=

 “doMove(‘form:available’, ‘form:chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;”

 id=”remove” onclick=

 “doMove(‘form:chosen’, ‘form:available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=

 “doMove(‘form:chosen’, ‘form:available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 </f:verbatim>

 <h:inputHidden id=”chosenItem”

 value=”#{example.chosenItem}” />

</h:panelGrid>

	 Other	than	the	hierarchical	identifiers,	the	“doMove()”	
and	“doUpdate()”	functions	for	JSF	are	identical	to	those	in	
the	Struts	implementation.	JavaScript	provides	client-side	
interactivity	in	JSF	just	as	it	does	in	Struts.
	 A	convenience	of	JavaServer	Faces	is	its	handling	of	the	
submit	action.	In	JavaServer	Faces,	you	can	define	the	submit	
button	to	explicitly	invoke	a	method	in	the	form	bean:

<h:commandButton action=”#{example.submit}”

 value=”#{bundle.submit}” />

	 The	“example:submit”	method	reads	the	hidden	field	
and	populates	the	lists.	Because	this	method	is	attached	to	

JDJ.SYS-CON.com14 August 2006

OPNET Panorama offers powerful analytics for rapid troubleshooting of complex
J2EE/.NET applications. Panorama quickly identifies how application, web, and data-
base servers are impacting end-to-end performance. With Panorama, you can pin-
point the source of a problem, so time and money aren't spent in the wrong places.

The most successful organizations in the world rely on OPNET's advanced
analytics for networks, servers, and applications.

OPNET Technologies, Inc. 7255 Woodmont Avenue, Bethesda, Maryland 20814 phone: (240) 497-3000 • e-mail: info@opnet.com • NASDAQ: OPNT

© 2006 OPNET Technologies, Inc. All rights reserved. OPNET is a registered trademark of OPNET Technologies, Inc.

www.opnet.com/pinpoint

MAKE ANSWERS TO PERFORMANCE PROBLEMS COME TO YOU.

FEaturE

the	submit	button,	there’s	no	need	to	implement	an	Action	
object.

public String submit()

{

 // Populate the available list from the language list.

 availableList.clear();

 availableList.addAll(languageList);

 // Populate the chosen list from the hidden field.

 chosenList.clear();

 move(availableList,

 chosenItem.split(“\\|”), chosenList);

 ...

 return(“success”);

}

	 There’s	not	much	of	a	learning	curve	to	JSF.	Tags	are	dif-
ferent,	but	they	usually	produce	smaller	JSPs.	Java	code	is	
similar	and	sometimes	requires	fewer	objects.
	 The	strongest	advantage	of	JavaServer	Faces	is	its	compo-
nent	architecture.	If	you	get	the	free	download	of	Sun’s	Java	
Studio	Creator,	you’ll	find	it	contains	a	complete	Add-and-
Remove	component	that	you	can	drag-and-drop	in	your	GUI.	
Sun’s	component	includes	features	such	as	“Move	Up”	and	
“Move	Down”	buttons	to	tweak	the	order	of	the	chosen	items.	
We	can	expect	many	such	useful	components	to	emerge	as	
JSF	development	advances.

Conclusion
	 This	article	has	described	a	standard	UI	design	pattern	
for	making	ordered	selections	and	selections	from	long	
lists.	Implementations	of	this	pattern	were	compared	using	
Jakarta	Struts	and	JavaServer	Faces.
	 JSF	provides	a	natural	migration	path	for	projects	moving	
from	Struts.	The	JSP	tags	are	simplified;	the	backing	bean	
code	is	similar;	and	if	you	need	JavaScript	for	interactivity,	the	
same	functions	can	be	used.
	 JSF	can	be	thought	of	as	a	simplified,	componentized	
version	of	Struts.	Its	designers	have	done	exactly	the	type	of	
work	one	hopes	for	in	a	“second	system”:	they’ve	added	use-
ful	features	and	reduced	complexity.
	 For	any	new	Web	project,	JavaServer	Faces	should	be	
strongly	considered.	For	existing	Struts	projects,	JSF	provides	
a	smooth	migration	path.

Resources
•	 Apache	Software	Foundation.	http://struts.apache.org/,	

2006.
•	 Steve	Aube.	A	Dual	Listbox	Selection	Manager.	http://

www.codeguru.com/Cpp/controls/listbox/article.php/
c4755.

•	 Hans	Bergsten.	JavaServer	Faces.	O’Reilly.	Sebastopol,	
CA.	2004.	

•	 Heman	Robinson.	“Struts	and	JavaServer	Faces:	Design	
Patterns	for	List	Selection.”	Java	Developer’s	Journal,	11:3,	
2006.

•	 Sun	MicroSystems,	Inc.	Java	Look	and	Feel	Design	
Guidelines:	Advanced	Topics.	Addison-Wesley	
Professional.	New	York.	2002.

•	 Sun	MicroSystems,	Inc.	“JavaServer	Pages	Standard	Tag	
Library.”	http://java.sun.com/products/jsp/jstl/.

•	 Sun	MicroSystems,	Inc.	http://developers.sun.com/prod-
tech/javatools/jscreator/reference/faqs/technical/web-
forms/js_client_identifier.html.

•	 Sun	Microsystems,	Inc.	Java	Studio	Creator.
	 http://developers.sun.com/prodtech/javatools/jscre-

ator/.
•	 Jennifer	Tidwell.	Designing	Interfaces.	O’Reilly.	

Sebastopol,	CA.	2005.	
•	 World	Wide	Web	Consortium.	HTML	4.01	Specification.	

http://www.w3.org/TR/html401/interact/forms.html#h-
17.13.	1999.

•	 Weinschenk,	Jamar,	and	Yeo,	GUI	Design	Essentials.	
Wiley	&	Sons.	New	York.	1997.			

“For any new
Web project,
JavaServer
Faces should
be strongly
considered.
For existing
Struts projects,
JSF provides
a smooth
migration
path.”

JDJ.SYS-CON.com16 August 2006

FEaturE

Listing 1 – Jakarta Struts JSP
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

<%@ taglib uri=”/WEB-INF/tlds/struts-bean.tld”

 prefix=”bean” %>

<%@ taglib uri=”/WEB-INF/tlds/struts-html.tld”

 prefix=”html” %>

<%@ taglib uri=”/WEB-INF/tlds/struts-logic.tld”

 prefix=”logic” %>

<%@ taglib uri=”/WEB-INF/tlds/c.tld”

 prefix=”c” %>

<%@ taglib uri=”/WEB-INF/tlds/fmt.tld”

 prefix=”fmt” %>

<HTML>

<HEAD>

 <TITLE>Add-and-Remove Pattern</TITLE>

 <link rel=”stylesheet” type=”text/css” href=

 ‘<%= request.getContextPath() + “/stylesheet.css” %>’>

</HEAD>

<BODY BGCOLOR=”white” onload=”doUpdate(false, false);”>

<fmt:setBundle basename=”com.kowaldesign.example.example”/>

<html:form action=”/exampleWrite.do”>

<table border=”0” cellpadding=”0” cellspacing=”5”>

 <%-- Add-and-Remove Pattern --%>

 <tr align=”middle” valign=”center”>

 <td>

 <fmt:message key=”available”/>

 <html:select property=”availableValues”

 multiple=”true” size=”7” style=”width:80px;”

 styleId=”available”

 onchange=”doUpdate(false, true);”>

 <html:optionsCollection property=”availableList”/>

 </html:select>

 </td>

 <td>

 <input type=”button” style=”width:100px;” id=”add”

 onclick=”doMove(‘available’,’chosen’, false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;” id=”addAll”

 onclick=”doMove(‘available’,’chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;” id=”remove”

 onclick=”doMove(‘chosen’,’available’, false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll”

 onclick=”doMove(‘chosen’,’available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 <html:hidden styleId=”chosenItem”

 property=”chosenItem” />

 </td>

 <td>

 <fmt:message key=”chosen”/>

 <html:select property=”chosenValues”

 multiple=”true” size=”7” style=”width:80px;”

 styleId=”chosen”

 onchange=”doUpdate(true, false);”>

 <html:optionsCollection property=”chosenList”/>

 </html:select>

 </td>

 </tr>

 <%-- Submit button --%>

 <tr align=”middle” valign=”top”>

 <td colspan=”3”>

 <input type=”submit”

 value=”<fmt:message key=’submit’/>” />

 </td>

 </tr>

</table>

</html:form>

<script language=”JavaScript”>

<!--

 /**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

 function doMove(sourceId, destId, all)

 {

 // Move the items between the lists.

 var sourceElem = document.getElementById(sourceId);

 var destElem = document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text = sourceElem.options[i].text;

 newOption.value = sourceElem.options[i].value;

 destElem.options[destElem.length] = newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate(false, false);

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“chosenItem”);

 var chosenList = document.getElementById(“chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

 }

 /**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested to ensure

 * at most one list contains selections.

 * <p>

 * @param offAvailable deselecting available list

 * @param offChosen deselecting chosen list

 */

 function doUpdate(offAvailable, offChosen)

 {

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“available”);

 var chosenList =

 document.getElementById(“chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

 }

// -->

</script>

</BODY>

</HTML>

<<End Listing 1.>>

JDJ.SYS-CON.com18 August 2006

Listing 2. JavaServer Faces JSP
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”

 “http://www.w3.org/TR/html4/strict.dtd”>

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

<%@ taglib uri=”/WEB-INF/tlds/c.tld” prefix=”c” %>

<%@ taglib uri=”/WEB-INF/tlds/fmt.tld” prefix=”fmt” %>

<HTML>

<HEAD>

 <TITLE>Add-and-Remove Pattern</TITLE>

 <link rel=”stylesheet” type=”text/css” href=

 ‘<%= request.getContextPath() + “/stylesheet.css” %>’>

</HEAD>

<BODY BGCOLOR=”white” onload=”doUpdate(false, false);”>

<f:loadBundle basename=”com.kowaldesign.example.example”

 var=”bundle”/>

<fmt:setBundle basename=”com.kowaldesign.example.example”/>

<f:view>

 <h:form id=”form”>

 <h:panelGrid columns=”1” rowClasses=”center”>

 <%-- Add-and-Remove Pattern --%>

 <h:panelGrid columns=”3” rowClasses=”center”>

 <h:outputText value=”#{bundle.available}” />

 <h:outputText value=”” />

 <h:outputText value=”#{bundle.chosen}” />

 <h:selectManyListbox id=”available”

 style=”width:100px; height:120px;”

 value=”#{example.availableValues}”

 onchange=”doUpdate(false, true);”>

 <f:selectItems

 value=”#{example.availableList}”/>

 </h:selectManyListbox>

 <h:panelGrid columns=”1”>

 <f:verbatim>

 <input type=”button” style=”width:100px;”

 id=”add” onclick=”doMove(

 ‘form:available’,’form:chosen’,false);”

 value=”<fmt:message key=’add’/>” />

 <input type=”button” style=”width:100px;”

 id=”addAll” onclick=”doMove(

 ‘form:available’,’form:chosen’, true);”

 value=”<fmt:message key=’addAll’/>” />

 <input type=”button” style=”width:100px;”

 id=”remove” onclick=”doMove(

 ‘form:chosen’,’form:available’,false);”

 value=”<fmt:message key=’remove’/>” />

 <input type=”button” style=”width:100px;”

 id=”removeAll” onclick=”doMove(

 ‘form:chosen’,’form:available’, true);”

 value=”<fmt:message key=’removeAll’/>” />

 </f:verbatim>

 <h:inputHidden id=”chosenItem”

 value=”#{example.chosenItem}” />

 </h:panelGrid>

 <h:selectManyListbox id=”chosen”

 style=”width:100px; height:120px;”

 value=”#{example.chosenValues}”

 onchange=”doUpdate(true, false);”>

 <f:selectItems value=”#{example.chosenList}”/>

 </h:selectManyListbox>

 </h:panelGrid>

 <%-- Submit button --%>

 <h:panelGrid columns=”1”>

 <h:commandButton action=”#{example.submit}”

 value=”#{bundle.submit}” />

 </h:panelGrid>

 </h:panelGrid>

 </h:form>

</f:view>

<script language=”JavaScript”>

<!--

 /**

 * Move selected items between lists.

 * <p>

 * @param sourceId ID of source list

 * @param destId ID of destination list

 * @param all true iff moving all

 */

 function doMove(sourceId, destId, all)

 {

 // Move the items between the lists.

 var sourceElem = document.getElementById(sourceId);

 var destElem = document.getElementById(destId);

 for(var i = 0; (i < sourceElem.length);)

 { if(sourceElem.options[i].selected || all)

 { var newOption =

 document.createElement(“OPTION”);

 newOption.text = sourceElem.options[i].text;

 newOption.value = sourceElem.options[i].value;

 destElem.options[destElem.length] = newOption;

 sourceElem.remove(i);

 }

 else

 i++;

 }

 // Update the button states.

 doUpdate();

 // Store the chosen items in a hidden field.

 var chosenItem =

 document.getElementById(“form:chosenItem”);

 var chosenList =

 document.getElementById(“form:chosen”);

 chosenItem.value = “”;

 for(var i = 0; (i < chosenList.length); i++)

 { chosenItem.value +=

 chosenList.options[i].value + ‘|’;

 }

 }

 /**

 * Update the button states based on whether

 * lists have contents and selected items.

 * Deselect list items if requested.

 * <p>

 * @param offAvailable deselecting available list

 * @param offChosen deselecting chosen list

 */

 function doUpdate(offAvailable, offChosen)

 {

 // Get the lists and deselect if requested.

 var availableList =

 document.getElementById(“form:available”);

 var chosenList =

 document.getElementById(“form:chosen”);

 if(offAvailable)

 availableList.selectedIndex = -1;

 if(offChosen)

 chosenList.selectedIndex = -1;

 // Update the button states.

 document.getElementById(“addAll”).disabled =

 (availableList.length == 0);

 document.getElementById(“removeAll”).disabled =

 (chosenList.length == 0);

 document.getElementById(“add”).disabled =

 (availableList.selectedIndex < 0);

 document.getElementById(“remove”).disabled =

 (chosenList.selectedIndex < 0);

 }

// -->

</script>

</BODY>

</HTML>

<<End Listing 2.>>

19August 2006JDJ.SYS-CON.com

his	article	introduces	a	new	
form	of	analysis	for	Java	EE	
applications:	a	runtime	abstract	
application	model	derived	
automatically	from	an	applica-

tion	server	using	stored	knowledge	
of	Java	EE	construction.	The	model	
is	used	dynamically	to	do	extensive	
automatic	checks	for	a	range	of	con-
struction	errors	that	could	produce	
poor	performance	or	unreliability.	
The	model	also	lets	server	behavior	be	
dynamically	visualized	in	real-time	or	
retrospectively.
	 There	has	been	a	lot	of	attention	
given	lately	to	the	topic	of	of	Model	
Driven	Architecture	(MDA),	which	
aims	to	create	working	systems	by	gen-
erating	source	code	from	successively	
transformed	high-level	component	
models.	While	doubts	have	been	cast	
on	the	real-world	robustness	of	this	
idea	—	and	previous	code-generation	
solutions	haven’t	been	a	big	success	
—	there’s	no	doubt	that	the	possibil-
ity	of	working	with	software	at	a	more	
abstract	level	holds	a	strong	appeal	for	
engineers.	
	 Although	the	inauspicious	history	
of	CASE	tools	suggests	that	making	a	
project	dependent	on	model-driven	
code	generation	could	be	limiting,	the	
central	tenet	of	MDA	—	the	ability	to	
view	and	analyze	our	application	at	
an	abstract	level	—	is	a	powerful	and	
attractive	goal.	Even	if	our	application	
grew	beyond	an	initial	set	of	pre-
defined	patterns	and	code	templates	
we’d	still	like	to	be	able	to	validate	and	
understand	it	based	on	a	design-level	
description	of	its	operation.	

Derived Model Analysis (DMA)
	 If	we	don’t	have	a	predefined	model,	
how	are	we	going	to	get	one?	Well,	if	
you	try	to	describe	your	application	to	
someone	else	you’ll	almost	certainly	

use	architecture-level	abstractions:	
the	services	it	uses;	the	main	busi-
ness	and	data	components	and	how	
these	relate.	So	it	would	be	good	if	
similar	high-level	abstractions	could	
be	derived	and	presented	automati-
cally	by	analyzing	and	monitoring	the	
execution	of	your	application.	Model	
elements	would	include	application	
components,	the	application	server	
services	they	use,	and	the	data	access,	
transaction	management,	and	calling	
relationships	between	them.
	 Once	application	model	elements	
were	identified	they	would	be	up-
dated	dynamically	during	execution.	
Monitoring	the	changing	patterns	of	
inter-relationships	in	the	model	would	
automatically	detect	construction-
quality	problems	by	detecting	unlikely	
relationships,	unnecessary	and	dupli-
cated	relationships,	and	undesirable	
model	entity	states.	Instead	of	trying	to	
spot	problems	in	the	clutter	of	source	
code	we	could	see	key	abstractions	
directly	in	the	model.
	 eoLogic	terms	this	form	of	indirect	
application	monitoring	Derived	Model	
Analysis	(DMA):	tools	analyze	Java	EE	
applications	both	statically	and	during	
server	execution	to	derive	an	abstract	
model	that	includes	both	application	
components	and	Java	EE	services.	
Subsequent	changes	to	the	model	
form	a	dynamic	event	sequence	that	
can	be	used	to	(a)	track	and	validate	
application	execution	and	(b)	visualize	
the	model.	Lower-level	application	
execution	details	can	be	recorded	in	
the	context	of	the	sequence	of	model	
changes.
	 Note	that	DMA	is	not	a	profiling	
technique	–	it	doesn’t	aim	to	identify	
current	code	hotspots;	instead,	it	
analyses	how	services	have	been	con-
structed	and	are	being	used.	The	idea	
is	to	identify	places	where	hotspots	or	

unreliability	may	occur	under	load.	
This	deeper	form	of	analysis	can	be	
used	to	find	problems	before	they	
manifest	themselves	and	without	the	
application	being	loaded	during	test-
ing.	These	problems	include	incorrect	
or	inefficient	transaction	grouping,	
inefficient	database	access,	unreli-
able	sequences	of	inter-component	
communication,	and	failure	to	control	
service	lifecycles	correctly.	There’s	no	
need	to	drive	the	application	to	a	point	
at	which	it	exhibits	slowdown,	and	the	
results	need	little	interpretation.

Deriving a DMA Model
	 To	generate	and	validate	an	abstract	
model	of	an	application	a	tool	must	
be	able	to	monitor	events	in	the	server	
and	interpret	them	in	light	of	the	
relevant	stored	knowledge.	
	 This	includes	definitions	of	the	
main	abstract	entities	we’re	interested	
in	(transaction	manager,	transaction	
resources,	transactions,	EJB	con-
tainers,	JMS	destinations,	etc.),	the	
possible	relationships	between	these	
entities,	and	invalid	and	valid	patterns	
of	relationships	and	states.	DMA	forms	
them	into	an	abstract	Entity-Relation-
ship-Attribute	(ERA)	model	as	the	
system	executes,	with	model	changes	
triggering	annotated	definitions	of	
problem	states.

Relationship to JMX
	 The	model	sounds	a	lot	like	Java	
Management	Extensions	(JMX)	
—	which	essentially	define	a	form	of	
abstract	model	for	purposes	of	manag-
ing	and	monitoring	Java	applications,	
and	it	suggests	that	possibly	DMA	
could	be	layered	on	top	of	the	infor-
mation	available	from	JMX	MBeans.	
In	detail,	what	characteristics	does	a	
DMA	model	require?	
•	 It	must	be	an	accurate	and	com-

dMa

by Alan West &
Gordon Cruickshank

Detecting J2EE Problems
Before They Happen

T

Derived Model Analysis

Gordon Cruickshank is

co-founder of eoLogic

(http://www.eologic.com),

a software tools company

created to develop innovative

testing and debugging solu-

tions. He was previously de-

velopment manager at Wind

River Systems and Objective

Software Technology, building

C++ debugging and object

visualization tools.

Alan West is CTO of eoLogic

(http://www.eologic.com),

responsible for all product

development. He was

previously a founder of Object

Software Technology Ltd, and

has over 20 years experience

in software tool design and

architecting large software

systems.

JDJ.SYS-CON.com20 August 2006

plete	abstract	model	of	an	applica-
tion,	linking	static	(source)	and	
runtime	application	components.	

•	 It	must	be	able	to	be	updated	in	
real-time	as	the	server	executes	
generating	meaningful	sequential	
event	flows.	

•	 It	must	support	a	wide	range	of	
relationship	types	including	appli-
cation-level	call	relationships.	

•	 It	must	be	able	to	be	intimately	
combined	with	knowledge	about	
valid	and	potentially	invalid	model	
forms.	

•	 It	must	be	possible	to	relate	model-
level	information	easily	back	to	
application	source.	

•	 It	must	be	easily	filtered	to	focus	on	
different	aspects	of	server	opera-
tion.	

•	 And	it	must	be	easily	and	intuitively	
understood.	

	 JMX	goes	some	way	towards	what	is	
needed:	It	provides	an	abstract	model	
of	an	application	for	both	its	static	and	
dynamic	aspects;	it	allows	easy	selec-
tion	of	MBeans;	many	MBeans	relate	
directly	to	easily	understood	aspects	
of	server	operation;	there’s	a	notifica-
tion	system	for	attribute	changes	and	
there’s	even	an	MBean	relation	service.
	 However,	for	our	purposes	it	also	
has	some	serious	limitations.	Many	of	
the	relationships	we	have	to	monitor	
are	based	on	calling	sequences	and	
application	component	relationships.	
Designed	primarily	for	system	man-
agement	and	threshold	monitoring,	
JMX	doesn’t	provide	the	source-level	
monitoring	and	mapping	that	the	
detection	and	(especially)	the	explana-
tion	of	application	construction	errors	
requires.	Also,	the	level	of	coverage	
is	generally	insufficiently	detailed	to	
provide	a	coherent	execution	model	
for	the	purposes	of	visualization.	
And	if	we	want	to	use	the	product	to	
investigate	problems	requiring	the	
ability	to	freeze	the	server	at	the	point	
of	problem	detection	and	extract	stack	
and	related	data	information	then	JMX	
isn’t	precise	enough.
	 So	the	approach	that	we	adopted	is	
to	create	a	more	detailed	runtime	ERA	
model	specialized	for	the	following	
purposes:	
•	 Representing	sequences	of	server	

operation	precisely	and	clearly	
•	 Detecting	construction	errors	

based	on	component	interrelations,	
including	call	sequences	and	trans-
action	membership	

•	 Explaining	construction	errors	by	
relating	model	entities	and	relation-
ships	to	precise	source	references	

•	 Providing	an	intuitive	visual	model	
of	sequential	server	operation	

•	 Supporting	model	tracing	and	play-
back	

•	 Supporting	integrated	debugging	

	

This	specialized	model	then	provides	the	
structure	for	attaching	knowledge	about	
model	entity	roles	and	valid	and	invalid	
patterns	of	model	relationships	and	at-
tributes,	together	with	details	on	problem	
descriptions	and	suggested	fixes.
	 The	need	for	detailed	tracking	of	
calls	and	object	states	means	that	the	

 Figure 1 DMA operation by abstraction and selection

 Figure 2 Example order form

 Figure 3 Use case alerts

21August 2006JDJ.SYS-CON.com

dMa

DMA	engine	moves	from	the	realm	
of	JMX	and	more	towards	an	applica-
tion	of	Aspect-Oriented	Program-
ming	(AOP),	combining	the	planned	
abstraction	of	JMX	with	the	detailed	
and	flexible	monitoring	and	interven-
tion	of	AOP.	Having	said	this,	it	would	

be	wasteful	not	to	exploit	the	JMX	
information	provided	by	a	server.	
Some	JMX	MBeans	serve	as	important	
internal	DMA	monitoring	and	access	
points,	but	are	augmented	with	addi-
tional	monitoring	and	updating	points	
in	the	server.

DMA Error Detection
	 As	shown	in	Figure	1	DMA	abstracts	
from	the	underlying	framework	and	
application	objects	to	a	conceptual	
ERA	model.	Queries	against	this	model	
then	provide	the	means	for	problem	
recognition.

 Figure 5 Diagram of entities and relationships at the mixed transactions alert

 Figure 4 Entities and relationships in the server view for the mixed transactions alert

JDJ.SYS-CON.com22 August 2006

dMa

		 Usually	the	abstraction	stage	is	pri-
marily	one	of	selection	as	key	objects	
are	monitored,	but	it	can	also	require	
composition	of	elements	from	more	
than	one	underlying	object.	

DMA Use Case
	 To	look	at	how	the	abstraction	
mechanisms	of	DMA	allow	con-
struction	problems	to	be	detected	

and	explained	let’s	look	at	it	operat-
ing	on	a	sample	application.	We’ll	
aim	to	show	how	we	can	identify	a	
pattern	of	application	and	frame-
work	components	that	indicates	
a	problem.	We’ll	then	show	how	
the	problem	can	be	visualized	and	
explained	back	to	the	source	level	
by	exploring	the	model	at	the	point	
of	detection.	

Example Application
	 Figure	2	shows	a	simple	Web-based	
order-processing	example	that	accepts	
orders	and	processes	them	in	the	fol-
lowing	way:
•	 An	order	invoice	is	created	and	

queued	to	an	existing	invoice	ser-
vice	using	JMS	to	create	and	process	
the	invoice.	

•	 The	order	details	are	queued	to	an	

 Figure 6 The instantiation location for the JMS Session

 Figure 7 JMS Session creation source line

JDJ.SYS-CON.com24 August 2006

 Figure 8

 Figure 9

order	processing	system	using	JMS	
to	process	and	deliver	the	order	
separately.

	
	 However	there’s	a	problem:	The	
invoices	don’t	arrive	at	the	invoice	pro-
cessing	application	although	the	order	
entries	are	processed	correctly.

Monitoring the Application
	 To	monitor	the	sample	application	
we’ll	run	the	WebLogic	server	from	our	
DMA	analyzer	called	eoSense,	which	
comprises	a	server	agent	and	a	client.	
The	agent	constructs	and	checks	the	
abstract	model	as	WebLogic	executes.	

When	a	problem	is	detected,	the	agent	
signals	an	alert	to	the	client.	

Transaction-Related Alerts
	 Running	the	example	application	
results	in	the	initial	alerts	shown	in	
Figure	3	being	detected	(after	several	
less	serious	alerts).
		 Looking	at	the	alerts	in	more	detail,	
there	was	a:
•	 JMS	Message	sent	inside	a	JTA	

Transaction	using	a	non-XA	
Connection	–	A	JMS	Connection	
created	from	a	non-XA	Factory	was	
used	to	create	a	JMS	session	and	
sender.	The	sender	was	then	used	

with	the	context	of	a	JTA	transac-
tion.	This	may	indicate	that	an	XA	
JMS	Connection	should	have	been	
used	instead.	

•	 Mixed	Transactions	–	The	JMS	send-
er	has	been	used	from	a	JMS	Session	
marked	as	transacted,	but	there’s	
already	a	JTA	transaction	active	on	
the	current	thread.

DMA Visualization
	 When	the	Mixed	Transaction	alert	is	
recorded	a	diagram	of	the	ERA	model	
allows	the	context	of	the	problem	to	be	
understood.	In	eoSense	this	is	called	
the	Server	View	and	an	image	of	the	

25August 2006JDJ.SYS-CON.com

dMa

server	view	is	shown	in	Figure	4.
	 We	can	see	that	there	are	two	active	
transactions,	one	linked	to	the	Order	
Processing	Servlet	and	the	other	linked	
to	a	JMS	Session.	We	can	also	see	
that	the	Order	Processing	Servlet	has	
communicated	with	two	JMS	Senders.	
Figure	5	shows	diagrammatically	the	
named	key	entities	and	relationships	
from	Figure	4.
	•	 There	are	two	in-flight	transactions	

held	by	the	Transaction	Manager	
•	 There	is	an	“initiated	By”	

relationship	between	the	
OrderProcessingExample	Servlet	
and	Transaction	1	

•	 There	is	an	“Initiated	By”	relation-
ship	between	the	JMS	Session	1	and	
Transaction	2	

•	 The	OrderProcessingExample	
Servlet	has	sent	two	Messages:	
There	is	a	“Has_Called”	relationship	
to	JMS	Sender	1,	which	is	attached	
to	the	Order	JMS	Destination,	and	
a	“Has_Called”	Relationship	to	JMS	
Sender	2,	which	is	attached	to	the	
Invoice	JMS	Destination.	

	 Note:	This	example	is	not	an	en-
dorsement	of	initiating	JTA	transac-
tions	in	servlets.	That’s	another	doubt-
ful	practice	–	and	one	that	eoSense	can	
also	detect	–	but	it’s	simpler	to	show	
the	example	this	way.

Problem Explanation
	 By	examining	the	alerts,	and	model	
entities	and	relationships,	we	can	
identify	the	elements	of	the	problem:
•	 There	are	two	transactions,	not	one	

as	expected	
•	 One	transaction	was	initiated	by	

the	servlet;	the	other	by	the	JMS	
session.	The	second	transaction	is	
unexpected.	

	 Now	we	can	use	the	model	to	map	
the	problem	back	down	to	the	source	
level.	By	selecting	the	JMS	Session,	as	
shown	in	Figure	6,	we	can	examine	the	
point	at	which	it	was	created	(source	
creation	points	are	available	for	ap-
plication-level	entities):	
		 The	displayed	source	in	Figure	7	
shows	that	it’s	been	created	with	the	
transaction	attribute	set	to	true:
		 If	we	want	both	the	order	and	invoice	
JMS	messages	to	form	part	of	the	
same	overriding	JTA	transaction,	the	
transaction	attribute	(the	first	argu-

ment)	should	be	false.	And	because	the	
JMS	Session-specified	transaction	was	
unintended	there’s	no	code	present	
in	the	application	to	commit	it	(as	the	
presence	of	the	transaction	in	the	eo-
Sense	view	after	order	entry	processing	
confirms).	And	even	if	the	gross	error	
of	not	committing	the	JMS-initiated	
transaction	hadn’t	happened	we	would	
still	have	code	that	incorrectly	creates	
two	transactions,	with	the	possibility	of	
intermittent	damaging	inconsistencies.

Mixed Transactions Model
Alert Query
	 The	DMA	model	consists	of	the	dy-
namic	set	of	abstract	entities	and	their	
relationships,	a	small	part	of	which	
we’ve	already	examined.	But	what	
model	trigger	fired	to	signal	the	Mixed	
Transactions	alert?	eoSense	defines	
query	triggers	as	plug-in	script	inserts	
to	its	database,	but	the	trigger	can	be	
expressed	concisely	as:

when relation Transaction_InitiatedBy cre-

ated and relation.to.type == JMSSession and

exists(select Transaction t1 from

Transactions

where relation.from.attribute.thread ==

t1.attribute.thread)

	 Having	identified	the	key	transac-
tion	and	session	entities,	we	can	then	
navigate	to	related	entities	to	show	the	
full	set	of	entities	and	relationships	in	
the	scope	of	the	problem	and	relate	
these	back	to	source-level	statements.	
In	the	example,	these	are	the	creators	
of	the	original	transaction	and	the	
problematic	session.	

JDBC Connection Not Closed Alert
	 If	we	continue,	Figure	8	shows	the	
next	alert	that	appears.
		 This	alert	indicates	that	a	JDBC	Con-
nection	has	not	been	closed	before	
the	methods	using	it	have	returned	
indicating	inefficient	use.	The	problem	
connection	is	indicated,	with	captured	
stacks	showing	its	use	without	closure,	
mapping	the	problem	back	to	the	
source	code.

Visualization
	 The	image	of	the	Server	View	in	
Figure	9	shows	the	direct	access	from	
the	servlet	to	the	DataSource	(itself	
a	doubtful	practice	which	could	be	
checked).

Connection not Closed Model Alert
Query
	 This	alert	requires	a	model	trigger	
to	dynamically	create	a	second	trigger	
that	then	fires	to	indicate	the	problem:

when relation DataSource_Returned_

Connection created

create Trigger(return,single) t1 on

findFrame(method.returns(java.sql.

Connection) == false)

when t1

connection.attribute(‘closed’) == false)

	 Note	that	this	rule	is	aimed	at	detecting	
an	unsafe	pattern	of	use.	If	we	just	wanted	
to	detect	connection	leaks	we	could	track	
references	but	the	intention	in	DMA	
checking	is	to	highlight	unsafe	program	
construction	patterns	(as	well	as	obviously	
faulty	ones)	and	so	achieve	code	that’s	not	
just	less	wasteful,	but	more	maintainable.

Efficiency
	 Doesn’t	visualization	and	modeling	of	
this	kind	impose	far	too	heavy	a	perfor-
mance	penalty?	Well,	no.	The	model	is	
derived	from	efficient,	highly	constrained	
monitoring	in	the	application	server,	the	
extent	of	which	is	dynamically	controlled.	
The	frequency	of	client	updates	for	visu-
alization	can	be	set	to	any	desired	level,	
and	the	model	can	be	examined	only	in	
retrospect,	if	that	is	preferred.

Summary
	 We’ve	seen	an	example	of	Derived	
Model	Analysis	in	action,	deriving	an	
entity-relationship	model	dynamically	
from	an	executing	Java	EE	application,	
and	using	this	to	detect	and,	impor-
tantly,	explain	clearly	serious	structural	
problems	that	were	not	exhibiting	
any	obvious	effect	and	would	not	be	
obvious	from	the	source	code	or	from	
tracing	application	components.
	 eoSense	can	use	DMA	to	represent	
visually	almost	all	Java	EE	services	and	
can	monitor	these	independently	or	in	
combination.	It	can	automatically	detect	
a	wide	range	of	serious	construction	de-
fects,	with	more	detectors	being	added	
as	new	problem	patterns	are	defined.	
It’s	clear	that,	as	applications	become	
increasingly	based	on	standardized	
frameworks,	automatically	identifying	
design-level	models	from	application	
execution	and	using	those	models	to	
validate	the	applications	becomes	a	real	
and	powerful	possibility.			

JDJ.SYS-CON.com26 August 2006

I know how to change
 my industry.

I know how to get
 investors on board.

 I can inspire.

 YEAH, THAT’S ME.

 I know people.

 I can lead.

 I need to do this.

I have the next great
 software idea.

Unlock your potential with the help of industry

leaders in Rich Internet Application development.

Discover how everyday we help people just like

you at cynergysystems.com/thatsme.

cynergysystems.com/thatsme

nlike	the	HTTP	protocol	there’s	no	stable	default	
JMS	listener	for	invoking	the	Web	Services	exposed	
in	Apache	Axis	1.x	using	JMS	(Java	Message	Service)	
as	the	transport	protocol	–	other	than	the	one	pro-
vided	merely	for	demo	purposes.	

	 This	article	describes	a	fully	working	generic	JMS	listener	
that	can	act	as	a	JMS	transport	receiver	handler	for	Axis	and	
allow	service	clients	to	uniquely	address	individual	Web	
Services	in	a	JMS	way	and	invoke	them	over	JMS.
	 Apache	Axis	is	a	popular	Java-based	Open	Source	platform	
for	exposing	Web	Services.	It	has	native	support	for	handling	
invocations	into	Web	Services	based	on	the	SOAP	(Simple	
Object	Access	Protocol)	application	protocol.	By	default,	the	
Axis	server	supports	HTTP	as	the	protocol	for	transporting	
the	SOAP	payload	and	provides	an	HTTP	transport	listener	to	
do	the	same	on	its	own.	The	HTTP	transport	listener	accepts	
the	SOAP	requests	coming	over	HTTP	and	then	hands	off	
the	SOAP	payload	to	the	Axis	engine	for	application-level	
handling	of	the	request	(like	SOAP	parsing,	extracting	input	
parameters,	invoking	the	right	service	implementation,	etc.),	
and	gets	the	response	SOAP	message	from	the	Axis	engine	
and	sends	it	back	to	the	caller	in	the	HTTP	response.
	 For	those	enterprise	applications	where	reliable	invocation	
and	guaranteed	delivery	of	invocation	messages	are	impor-
tant,	JMS,	rather	than	HTTP,	is	the	preferred	protocol	for	
transporting	SOAP	messages.	JMS	implementation	provid-
ers,	with	built-in	reliability	features	like	re-try	mechanisms,	
ensure	that	messages	reach	the	message	consumer	applica-
tion	whatever	the	case.	JMS	is	also	the	best	way	to	handle	
asynchronous	invocations	of	Web	Services.
	 However,	what	Axis	1.x	provides	for	JMS	transport	protocol	
use	is	only	a	basic	demo	listener	that’s	not	really	meant	for	
production-level	use.	This	listener	is	also	not	easy	to	use	and	
isn’t	flexible	enough	to	be	able	to	specify	and	handle	unique	
endpoint	addresses	for	each	individual	Web	Service	exposed.	
So,	for	client	applications	that	need	to	invoke	the	Axis	Web	
Services	over	JMS	a	flexible,	stable,	and	easy-to-use	JMS	
transport	listener	and	handler	is	required.	
	 This	article	implements	a	generic	JMS	listener	and	
describes	how	it	is	to	be	used	along	with	the	Axis	server.	For	

purposes	of	this	paper,	I’ve	considered	the	Open	Source	
frameworks	Apache	Axis	1.2	and	JMS	provider	OpenJMS	
0.7.6.1.	However,	this	should	be	largely	applicable	to	the	
higher	versions	of	Axis	in	the	1.x	series	too.

The Addressing Model
	 In	an	Axis	server,	each	Web	Service	is	described	in	the	
server-config.wsdd	file	and	the	service	name	mentioned	
there	becomes	part	of	the	concrete	HTTP	URL	(concrete	port	
binding)	for	accessing	the	Web	Service.	For	example,	to	ac-
cess	a	“StockQuoteService”	defined	in	the	server-config.wsdd	
of	the	Axis	server	running	in	host	www.samplehost.com,	the	
default	HTTP	URL	would	be	http://www.samplehost.com/
axis/Services/StockQuoteService.	Each	Web	Service	similarly	
defined	in	server-config.wsdd	will	have	a	unique	access	
URL	like	the	one	above	with	the	first	portion	of	the	URL,	i.e.,	
http://www.samplehost.com/axis/Services/,	remaining	the	
same.	In	this	sense,	each	Web	Service	will	be	addressed	with	a	
unique	HTTP	destination.
	 We	can	choose	to	follow	a	similar	model	for	exposing	the	
same	Web	Services	over	the	JMS	transport	protocol.	In	other	
words,	each	service	endpoint	will	be	available	at	a	unique	
JMS	destination	(aka	a	queue).	So	for	each	Web	Service	
defined	in	the	Axis	server,	we	define	a	separate	queue	in	
the	JMS	provider	–	in	our	case	OpenJMS	–	and	update	the	
openjms.xml	file	in	the	config	folder	of	the	OpenJMS	home	
for	defining	one	queue	for	each	Axis-deployed	Web	Service	
that’s	meant	to	be	accessible	over	JMS.	In	this	article,	the	ap-
proach	taken	is	to	use	the	service	name	defined	in	Axis	itself	
as	the	queue	name	(similar	to	the	HTTP	concrete	binding	
mentioned	above).	For	example,	for	the	sample	Web	Service	
called	“MessageService”	provided	in	the	Axis	distribution,	
we	can	define	a	queue	with	the	same	name	putting	the	entry	
<AdministeredQueue	name=”MessageService”/>	in	openjms.
xml.
	 This	addressing	model	applies	uniformly	to	both	RPC-style	
and	message-style	Axis	services.	It’s	more	straightforward	and	
standards-compatible	with	the	WSDL	specs.	The	JMS	desti-
nation	for	each	Web	Service	becomes	the	address	in	the	con-
crete	port	binding	for	the	service	and	the	Web	Service	clients	

U

A Generic JMS Listener
for Apache Axis 1.x
A needed transport-level handler by Parameswaran Seshan

Parameswaran Seshan is

a technical architect with

Software Engineering and

Technology Labs, the R&D

division of Infosys Tech-

nologies Ltd. in Bangalore,

India. His areas of expertise

include Business Process

Management systems, Web

Services, and Java.

JDJ.SYS-CON.com28 August 2006

can	directly	use	this	concrete	JMS	destination	mentioned	in	
the	WSDL	file	for	invoking	the	service.	
	 This	is	a	better	model	than	the	non-standard	way	of	speci-
fying	the	Axis	Web	Service	name	as	the	prefix	in	the	request	
SOAP	message	body’s	first	XML	element.	For	example,	for	the	
invocation	of	the	method	“getQuote”	in	the	Axis	sample	Web	
Service	named	“urn:xmltoday-delayed-quotes,”	which	is	an	
RPC-style	service,	the	basic	JMS	listener	provided	in	the	Axis	
distribution	expects	the	client	to	create	the	SOAP	body	ele-
ment	<urn:xmltoday-delayed-quotes:getQuote>	containing	
the	service	name	as	the	XML	prefix.	
	 The	client	does	this	through	code	similar	to	call.
setOperationName(new	QName(“urn:xmltoday-delayed-
quotes:getQuote”,	“getQuote”)).	This	fact	doesn’t	appear	in	
the	WSDL	definition	of	the	service	hence	interoperability	
with	different	external	service	clients	could	become	an	
issue.	It’s	best	to	stick	to	the	details	given	in	the	WSDL	file	
and	with	the	new	service	endpoint	addressing	scheme	
introduced	here,	all	the	clients	can,	in	a	standard	way,	just	
keep	the	first	SOAP	body	element	as	<getQuote>	following	
the	WSDL	details	alone,	thereby	improving	interoperabil-
ity.

The Role of JMS Listener
	 The	JMS	listener	is	a	server-side	component	that	needs	to	
listen	to	incoming	JMS	messages	containing	SOAP	messages	
at	the	defined	JMS	queue.	These	SOAP	messages	are	request	
messages	coming	from	service	clients	that	are	trying	to	
invoke	the	Web	Service(s).	Once	the	JMS	message	is	received,	
the	onMessage()	method	in	the	listener	needs	to	get	the	mes-
sage	content	which	is	the	SOAP	XML	payload,	and	invoke	the	
Axis	engine	supplying	the	SOAP	XML	message	and	also	speci-
fying	to	Axis	the	name	of	Web	Service	that’s	being	invoked.	
This	handing	over	of	the	SOAP	message	to	Axis	server	is	the	
key	responsibility	of	this	listener.
	 Then,	if	the	client	expects	a	response	back	from	the	Web	
Service	(such	as	in	a	pseudo-synchronous	call),	the	JMS	
listener	needs	to	get	the	SOAP	response	message	from	the	
Web	Service	and	put	it	as	the	payload	in	a	new	JMS	message	
and	send	this	message	to	the	JMS	queue	destination	the	cli-
ent	is	waiting	on.	This	JMS	listener	can	be	used	for	receiving	
requests	of	both	RPC-style	and	document-style	Web	Services	
invocations	since	it	doesn’t	read	and	interpret	the	SOAP	mes-
sage	at	all;	it	just	sticks	to	its	role	as	a	transport-level	handler.

Implementing the Listener
	 Now	we’ll	look	at	the	implementation	of	the	JMS	listener.	
To	realize	the	addressing	model	described	above,	the	ap-
proach	is	to	have	one	instance	of	the	listener	class	Gener-
icJMSSOAPListenerForAxis	for	each	Axis	Web	Service.	This	
class	that	implements	javax.jms.MessageListener	is	a	generic	
listener	for	JMS	Web	Service	requests.	I’ll	explain	the	salient	
parts	of	this	class	in	this	section	and	the	next.	The	full	source	
code	of	this	and	other	classes	discussed	here	is	available	for	
download	in	the	resources	section.
	 First	the	constructor	of	this	class	needs	to	register	with	
OpenJMS	for	receiving	messages	in	the	queue	defined	for	this	
Web	Service.	The	constructor	takes	the	Web	Service	name	
as	an	input	argument.	A	static	initialization	block	is	used	to	
instantiate	the	Axis	engine	and	this	gets	executed	when	the	

Java	Virtual	Machine	(JVM)	loads	the	GenericJMSSOAPLis-
tenerForAxis.	All	the	instances	of	this	class	have	to	use	the	
same	Axis	engine	instance.	

...

public GenericJMSSOAPListenerForAxis(String webserviceName)

{

 ...

 this.webserviceName = webserviceName;

 ...

}

	 AxisJMSListenersStarter	class’s	main	method	starts	the	
listeners	by	reading	the	XML	file	“jmswebsvcs.xml”	that	con-
tains	the	list	of	Axis	Web	Services,	creating	and	starting	one	
instance	of	GenericJMSSOAPListenerForAxis	for	each	service	
in	the	list	by	passing	the	name	of	the	Web	Service	as	an	argu-
ment	to	the	constructor.	In	effect	this	dynamically	creates	the	
concrete	service	endpoint	destinations	for	the	JMS	protocol,	
since	each	Web	Service	now	gets	a	unique	concrete	address.

public static void main(String[] args)

{

 // Read the JMS Web Services names from the xml file.

 ...

 org.w3c.dom.Document servicesListDoc = db.parse(inFileFullPath);

 org.w3c.dom.NodeList servicesList = servicesListDoc.getDocumen-

tElement().getElementsByTagName(“service”);

 for (int k = 0; k < servicesList.getLength(); k++)

 {

 String webSvcName = ((org.w3c.dom.Element) servicesList.

item(k)).getFirstChild().getNodeValue();

 new GenericJMSSOAPListenerForAxis(webSvcName);

 }

 ...

	 Now	let’s	look	at	the	message-handling	logic	in	the	Gener-
icJMSSOAPListenerForAxis	that’s	instantiated	for	a	particular	
Web	Service,	say,	“MessageService.”	Its	onMessage()	method	
is	called	once	the	message	arrives	in	the	queue	named	“Mes-
sageService.”	After	creating	the	Axis	MessageContext	for	the	
message	the	onMessage	method	sets	the	serviceHandler	field	
of	the	MessageContext	to	tell	Axis	that	the	Web	Service	being	
invoked	is	“MessageService”	and	that	for	executing	service-
specific	functionality,	the	service	implementation	class,	as	
defined	in	the	server-config.wsdd,	for	service	name	“Messag-
eService”	should	be	invoked.

public void onMessage(javax.jms.Message inMsg)

{

 ...

 axisMsgCtxt.setRequestMessage(axisSoapMessage);

 // Set the target Web Service in the Axis message context to

indicate that this message should

 // go to the Axis webservice named <webserviceName> for which

this queue is receiving messages.

 axisMsgCtxt.setTargetService(webserviceName);

...

}

29August 2006JDJ.SYS-CON.com

FEaturE

	 This	method	then	sends	the	response	SOAP	message	to	the	
JMS	client.	However,	at	this	point	no	correlation	id	is	used.	
For	simplicity’s	sake	it’s	assumed	here	that	the	client,	after	
sending	the	message,	waits	on	a	receive	queue	expecting	to	
get	a	response	message	for	the	Web	Service	invocation	it	just	
made.	This	listener	class	can	easily	be	extended	to	refer	to	
and	use	a	client-specified	JMS	correlation	id	to	send	a	cor-
related	response	to	the	client.	

Invoker-side implementation
	 Now	let’s	look	at	some	key	aspects	on	the	client	side	of	
the	invocation.	The	classes	written	for	the	client	side	are	
JMSTestClientRPC,	MyJMSTransportForAxis,	JMSTestClient-
MessageStyle	–	which	are	client	classes	that	invoke	RPC-	and	
message-style	services	respectively,	for	example	they	respec-
tively	invoke	the	services	“urn:xmltoday-delayed-quotes”	
of	samples.stock	and	“MessageService”	of	samples.message	
packages,	the	samples	available	in	the	Axis	distribution	–	and	
MyJMSSender	–	which	are	the	JMS	transport	handlers	for	the	
client	side.	JMSTestClientRPC	makes	a	call	using	the	Axis	Call	
object	to	a	given	RPC	Web	Service	using	JMS	as	the	transport.	
Hence	it	specifies	the	unique	target	endpoint	JMS	address	
defined	for	that	particular	Web	Service,	for	example,	here	
“urn:xmltoday-delayed-quotes.”	Please	note	that	the	RPC	
operation	name	is	set	with	just	the	method	name	as	given	
in	the	WSDL	file	and	no	service	name	prefix.	The	Axis	Call	
object	has	to	be	told	that	a	JMS	transport	handler	needs	to	
be	used	for	this	invocation.	This	handler	class	is	instantiated	
and	attached	to	the	call	here.	If	this	value	isn’t	set,	Axis	will	
use	the	HTTP	transport	handler	by	default.	For	both	RPC-	
and	message-style	invocation,	the	same	MyJMSTransport-
ForAxis	and	MyJMSSender	classes	are	used	and	connected	
via	an	entry	made	in	the	client-config.wsdd	file	available	in	
the	client	classpath.	MyJMSTransportForAxis	class	helps	Axis	
locate	this	entry	in	the	client-config.wsdd.	MyJMSSender’s	
job	is	to	actually	send	the	SOAP	message	as	a	JMS	message	to	
the	Web	Service	queue	destination	specified	here	and	get	the	
response	from	the	response	queue.

...String webSvcJMSDestination = “urn:xmltoday-delayed-quotes”;

axisCall.setProperty(org.apache.axis.transport.jms.JMSConstants.

DESTINATION, webSvcJMSDestination);

axisCall.setOperationName(“getQuote”);

...org.apache.axis.client.Transport transport = new

MyJMSTransportForAxis();

axisCall.setTransport(transport);

...

Running the Listeners
	 Install	OpenJMS	and	Axis.	Unzip	the	download.zip	into	a	
windows	folder	named,	say,	A.	Modify	the	setclasspath.bat	
to	give	the	correct	value	for	Axis	Home	and	openjms	home.	
Put	the	server-config.wsdd	in	your	Axis	installation’s	(the	axis	
zone	of	your	web	server’s	webapp)	WEB-INF	folder	if	there	is	
none	already.	If	you	already	have	this	file	then	copy	the	two	
service	element	entries	in	full	to	the	already	existing	server-
config.wsdd.	Define	three	queues	in	openjms.xml,	i.e.,	one	
for	each	Web	Service	given	in	jmswebsvcs.xml	and	one	for	
“replyq,”	which	is	the	reply	queue	used	by	the	client.	Change	

the	GenericJMSSOAPListenerForAxis	code	line	at	the	top	to	
specify	the	full	path	of	your	Axis	installation’s	server-config.
wsdd	file.	Compile	the	source	code	to	create	.class	files.	Put	
the	.class	files	in	folder	A	with	the		right	package	structure.
Now	start	openjms.	Go	to	folder	A	in	the	DOS	command	
prompt.	Run	setclasspath.bat.	Then	start	the	JMS	listeners	
using	the	command	java	jms.AxisJMSListenersStarter.	
	 Now,	to	run	the	test	client,	open	another	command	
prompt	window.	Go	to	folder	A.	Run	setclasspath.bat.	Use	the	
command	java	invoker.jms.JMSTestClientRPC	to	run	the	JMS	
RPC	client.	Then	use	the	command	java	invoker.jms.JMST-
estClientMessageStyle	to	run	the	JMS	message	service	client.	
Make	sure	that	folder	A	contains	the	client-config.wsdd	and	
that	folder	A	is	first	in	the	class	path	order.

Summary
	 This	article	has	introduced	a	working	JMS	listener	for	use	
with	Apache	Axis	1.x	and	has	shown	how	clients	can	uniquely	
address	Axis	Web	Services	for	invocation	over	JMS	and	how	
they	invoke	them	over	JMS	using	a	combination	of	this	lis-
tener	and	custom-written	JMS	transport	handlers.
	 The	source	code	for	this	solution	can	be	downloaded	from	
the	online	version	of	this	article	at	http://java.sys-con.com.

Resources
•	 Axis:	http://ws.apache.org/axis/java/index.html
•	 Openjms:	http://openjms.sourceforge.net/	
•	 Web	Services	Description	Language	(WSDL)	1.1	-	March	

15,	2001	http://www.w3.org/TR/2001/NOTE-wsdl-
20010315	

•	 JMS:	http://java.sun.com/products/jms/	
•	 Some	articles	on	JMS	with	Axis:	

-	 “Programming	JMS	Applications	using	Axis”	(IBM	
developerworks)	http://www-128.ibm.com/devel-
operworks/webservices/library/ws-jms/	

-	 “Axis	meets	MOM”	(javaworld.com)	http://www.java-
world.com/javaworld/jw-02-2006/jw-0220-axis.html			

“Apache Axis is a
popular Java-based
Open Source
platform for
exposing
Web Services”

JDJ.SYS-CON.com30 August 2006

i: www.backbase.com t: (866) 800-8996 e: sales-us@backbase.com
© Backbase BV - all rights reserved. BACKBASE is a trademark of Backbase BV.

AJAX for Java

Backbase offers a comprehensive AJAX
Development Framework for building Rich Internet
Applications that have the same richness and
productivity as desktop applications.

The Backbase AJAX Java Edition:

is based on JavaServer Faces (JSF)
runs in all major Application Servers
supports development, debugging and deployment in Eclipse
embraces web standards (HTML, CSS, XML, XSLT)

Download a 30-day Trial at www.backbase.com/jsf

•
•
•
•

ervice	Data	Objects	(SDOs)	
have	become	a	foundation	
technology	for	Service	Oriented	
Architecture	(SOA).	Recently,	

BEA,	IBM,	Oracle,	SAP,	Iona,	Siebel,	
and	Sybase	announced	their	support	
for	an	SOA-enabling	framework	speci-
fication	named	Service	Component	
Architecture	(SCA).	SD	O	provides	the	
primary	data	representation	in	this	
framework.
	 Although	not	addressed	by	the	cur-
rent	SDO	or	SCA	specifications,	there’s	
a	definite	need	for	a	generic	data	
access	service	that	operates	in	terms	
of	SDOs.	The	alternative	to	this	service	
would	be	the	tedious	and	error-prone	
development	of	a	custom	mapping	
between	the	back-end	data	represen-
tation	and	Service	Data	Objects.
	 The	Relational	Database	Data	Ac-
cess	Service	(RDB	DAS)	obviates	the	
need	for	this	custom	development	by	
providing	a	robust	data	access	utility	
built	around	SDO.	Because	of	its	tight	
integration	with	SDO,	the	RDB	DAS	is	
also	a	perfect	solution	for	data	access	
in	an	SCA-based	application.
	 By	employing	the	RDB	DAS,	
applications	avoid	the	details	and	
complications	of	working	directly	
with	a	relational	database	and	also	the	
complex	transformation	between	rela-
tional	rows/columns	and	Data	Object	
types/properties.

Background
	 Since	the	release	of	the	specifica-
tion	in	late	2003,	SDO	has	proven	
itself	a	flexible	and	robust	technology	
for	data	representation.	Its	inherent	
support	for	disconnected	operations	
and	heterogeneous	data	sources	of-
fers	strong	support	for	the	needs	of	
modern	software	architectures.	For	
these	reasons,	SDO	has	found	its	way	

into	several	commercial	products	
from	major	vendors	and	these	same	
characteristics	have	led	to	its	inclu-
sion	in	SCA	as	a	foundation	technol-
ogy.
	 SDO	provides	the	general	case	
mechanism	for	moving	data	around	
an	SCA-enabled	application.	However,	
the	reality	is	that	most	of	this	data	
must	originate	in	some	database	at	
one	edge	of	the	application	and	be	
stored	in	some	database	at	another	
edge.	Unfortunately,	database	access	
isn’t	currently	either	SDO	or	SCA.	(An	
early	version	SDO	Data	Access	Service	
specification	is	in	progress.)
	 This	leaves	the	developer	with	a	
serious	undertaking	since	there’s	a	
fundamental	mismatch	between	the	
objects	that	an	application	works	with	
and	the	tables	and	rows	of	a	relational	
database	that	provide	the	persistent	
store	for	the	object’s	state	(see	http://
en.wikipedia.org/wiki/object-rela-
tional_impedance_mismatch).
	 For	example,	let’s	consider	a	simple	
query	against	a	relational	database	for	
customers	in	a	certain	age	range	and	
their	related	orders.
	 An	SDO-enabled	application	could	
most	easily	and	naturally	work	with	a	
normalized	graph	of	Data	Objects	rep-
resenting	the	query.	Figure	1	illustrates	
this	graph	of	connected	Data	Objects.
	 This	in-memory	graph	of	data	ob-
jects	brings	to	bear	all	of	the	capabili-
ties	of	SDO.	
•	 It’s	a	disconnected	representation	of	

the	queried	data
•	 It	provides	simple	traversal	between	

related	elements
•	 It	tracks	all	changes	from	its	original	

form	via	the	SDO	change	summary
•	 It	contains	no	redundant	informa-

tion
•	 It’s	easily	serialized	to	XML

	 But	unfortunately	the	relational	
database	returns	a	tabular	representa-
tion	of	the	query	result	complete	with	
redundant	customer	information	as	
shown	in	Figure	2.
	 The	transformation	required	to	
convert	from	tabular	format	to	a	graph	
of	interconnected	data	objects	is	com-
plicated	and	the	reverse	(transforming	
graph	changes	to	a	sequence	of	SQL	
inserts/updates	and	deletes)	is	even	
more	so.
	 Because	of	the	difficulties	inherent	
in	the	transformation	between	the	
database	and	the	application	object	
space,	an	application	development	
project	can	easily	spend	a	third	of	its	
development	resources	on	functions	
related	to	moving	object	state	in	and	
out	of	the	database.
	 Business	application	developers	
shouldn’t	be	burdened	with	this	task	
and	should	instead	be	allowed	to	focus	
on	business	functionality.

Solution
	 The	RDB	DAS	offers	a	solution	to	
the	problems	mentioned	above	by	
providing	two	major	capabilities.	The	
RDB	DAS	can:
1.	Execute	SQL	queries	and	return	

results	as	a	graph	of	Data	Objects
2.	Reflect	changes	made	to	a	graph	of	

Data	Objects	back	to	the	database
	
	 Figure	3	illustrates	these	two	capa-
bilities	in	a	typical	client	interaction.	
The	client	starts	by	reading	a	graph	
of	data	specified	by	some	query.	The	
client	then	makes	modifications	to	the	
graph,	possibly	by	adding	elements,	
and	then	requests	the	DAS	to	push	the	
changes	back	to	the	database.
	 The	DAS	provides	an	intuitive	in-
terface	and	is	designed	so	that	simple	
tasks	are	simple	to	complete	while	

Sdo

by Kevin Williams
 & Brent Daniel

Data Access
Service

S

How to access relational data in
terms of Service Data Objects

Kevin Williams is a soft-

ware developer with IBM

and is leading IBM’s

participation in the DAS

subproject of the Apache

Tuscany incubator.

Brent Daniel is a software

developer working on

SDO related technologies

for IBM. He is a major

contributor to the DAS

subproject of the Apache

Tuscany incubator.

JDJ.SYS-CON.com32 August 2006

more	complicated	tasks	are	just	a	little	
less	simple.
	 The	application	interface	to	the	
DAS	is	based	on	the	familiar	Com-
mand	Pattern	and	interaction	with	the	
DAS	consists	of	acquiring	command	
instances	and	executing	them	(see	De-
sign Patterns	by	Erich	Gamma,	et	al).	
The	following	example	demonstrates	
the	simplest	possible	read	of	data.

Command read =

 Command.FACTORY.createCommand(“select

* from CUSTOMER where ID = 10021”);

read.setConnection(getConnection());

DataObject root = read.executeQuery();

	 In	this	case	the	command	is	created	
programmatically	from	a	Command	
factory	and	the	only	input	necessary	is	
the	SQL	SELECT	statement.	Executing	
the	read	command	returns	the	root	of	
the	resulting	data	graph	and	data	can	
be	extracted	from	the	graph	using	the	
SDO	dynamic	API.

String lastName = root.

 getString(“CUSTOMER[1]/LASTNAME”);

	 Pushing	changes	back	to	the	
database	can	be	equally	straightfor-
ward.	Continuing	with	this	example	
we	can	modify	the	customer	object	
and	then	direct	the	DAS	to	send	
the	modifications	to	the	database.	
This	line	uses	the	SDO	dynamic	
API	to	change	the	last	name	of	the	
retrieved	customer.

root.setString (“CUSTOMER[1]/LASTNAME”,

“Williams”);

	 Now	that	we	have	a	modified	graph,	
we	can	synchronize	the	changes	with	
the	database	by	passing	the	data	graph	
to	an	“apply	changes	command”	and	
asking	it	to	execute.

ApplyChangesCommand apply = Command.

FACTORY.createApplyChangesCommand();

apply.setConnection(getConnection());

apply.execute(root);

	 As	you	may	have	noticed,	the	read	
and	write	examples	each	required	
three	lines	of	code	(except	the	code	to	
get	the	connection	object).	So	those	
of	you	familiar	with	O/R	frameworks	
might	be	asking	yourself	a	few	ques-
tions.	What	is	going	on	here?	Where	
did	you	define	all	the	configura-
tion	data?	I	didn’t	see	a	deployment	

descriptor?	Where	is	the	object-
relational	mapping	information?	
Where	are	the	static	domain	classes	
like	Customer?	The	answers	to	these	
questions	are	based	on	two	signifi-
cant	SDO	capabilities	and	one	design	
philosophy:
•	 Dynamic	SDO
•	 SDO	Change	History
•	 DAS	use	of	convention

Dynamic SDO
	 The	reason	you	don’t	see	a	Cus-
tomer	interface	or	class	used	in	this	
example	is	because	the	DAS	can	work	
with	dynamic	SDO	data	objects.	This	is	
a	very	powerful	and	often	overlooked	
SDO	capability.
	 Many	applications	today	use	the	
Transfer	Object(TO)	pattern	to	move	
data	around	tiers	within	an	applica-
tion	(see	Core J2EE Patterns	by	Deepak	
Alur,	et	al).	Since	these	TOs	typically	
have	no	behavior,	there’s	little	justifica-
tion	for	Java	interfaces	and	classes	to	

implement	the	TO.	These	artifacts	just	
represent	more	code	to	write,	main-
tain,	and	manage.
	 One	argument	for	TOs	as	Java	inter-
faces/classes	is	the	potentially	cleaner	
API:

Static API

customer.setLastName(“Williams”)

Dynamic API

customer.setString(“lastName”, “Williams”)

	 However,	the	SDO	dynamic	API	
is	straightforward	and	can	even	be	
simpler	to	read	than	a	static	equiva-
lent.	For	example,	we	can	use	the	SDO	
XPath	capability	to	access	properties	
like	this:

amount = customer.getFloat(“orders[17]/

price”);

	 The	equivalent,	with	normal	static	
Java	APIs,	would	look	something	like	
this:

amount = ((Order)customer.getOrders().

get(17)).getPrice();

	 The	dynamic	API	can	also	be	use-
ful	in	applications	where	the	data	
model	is	likely	to	change	often	dur-
ing	development.	It	lets	developers	
use	the	full	breadth	of	Data	Object	
function	without	having	to	generate	
a	new	static	model	(Java	classes	and	
interfaces)	every	time	a	change	is	
made.	

SDO Change History
	 The	change	history	feature	of	SDO	
data	graphs	is	another	reason	that	
SDO	data	objects	can	be	thought	of	
as	transfer	objects	on	steroids.	Not	

 Figure 1 DMA operation by abstraction and selection

 Figure 2 DMA operation by abstraction and selection

33August 2006JDJ.SYS-CON.com

Sdo

only	do	data	objects	provide	a	snappy	
dynamic	API	and	XML	serialization,	
SDO	data	objects	also	remember	any	
changes	that	have	been	made	to	them.
	 The	change	history	capability	means	
that	SDO	data	objects	aren’t	dependent	
on	a	container	or	some	persistence	
manager	to	track	their	state.	In	fact,	
since	the	change	history	is	serialized	
along	with	the	associated	data	objects,	
a	graph	of	SDO	data	objects	can	flow	
through	different	tiers	of	a	distrib-
uted	application	remembering	all	the	
changes	that	may	occur	along	the	way.	
Later,	when	it’s	time	to	reflect	those	
changes	back	to	the	database,	the	DAS	
can	process	the	change	history	and	
build	the	set	of	create/update/delete	
commands	needed	to	flush	the	accu-
mulated	changes.
	 The	Change	History	tracks	changes	
made	to	all	data	object	properties	in-
cluding	fields	and	relationships.	Using	
this	information,	the	DAS	can	handle	
the	complex	task	of	reflecting	object	
graph	changes	back	to	the	database	
without	exposing	this	complexity	to	
users.	The	DAS	translates	object	prop-
erty	changes	into	database	column	up-
dates	and	object	relationship	changes	
into	database	foreign	key	updates.	

Use of Convention over
Configuration
	 The	DAS	makes	use	of	convention	to	
simplify	the	programming	model.	For	
instance,	in	the	simple	read	example	
above	we	have	this	statement	to	access	
the	last	name	of	a	customer:

String lastName = root.

getString(“CUSTOMER[1]/LASTNAME”);

	 Notice	the	path	name:	“CUSTOM-
ER[1]/LASTNAME”.	This	suggests	that	
there	is	an	SDO	Type	named	CUSTOM-
ER	with	a	property	named	LASTNAME.	

If	you	remember,	the	command	used	
to	read	this	data	was	created	like	this:

Command read =

 Command.FACTORY.createCommand(“select *

from CUSTOMER where ID = 10021”);

	 The	RDB	DAS,	by	convention,	creates	
an	SDO	Type	for	each	database	table	
represented	in	the	query	result.	In	
addition,	it	creates	a	property	for	each	
table	column	represented	in	the	query	
result.	In	the	absence	of	any	additional	
configuration	data,	the	names	of	these	
Types	and	Properties	will	exactly	match	
the	names	of	the	database	Tables	and	
Columns.	So	given	the	SELECT	state-
ment	above	and	the	knowledge	that	the	
CUSTOMER	table	has	a	column	named	
LASTNAME,	we	can	assume	that	the	
data	graph	returned	will	be	populated	
with	instances	of	Type	CUSTOMER	
that	have	a	property	LASTNAME.	This	
capability	is	made	possible	by	using	the	
metadata	associated	with	the	ResultSet	
returned	from	the	query	execution.
	 If	the	application	developer	wants	
the	names	of	Types	and	Properties	to	
vary	from	the	names	of	the	Tables	and	
Columns	then	he	or	she	can	override	
this	convention	with	a	bit	of	configura-
tion.	We’ll	get	into	the	details	of	provid-
ing	configuration	to	the	DAS	a	little	
later.
	 Another	bit	of	convention	that	this	
example	demonstrates	is	exploited	
when	flushing	graph	changes	to	the	
database:

ApplyChangesCommand apply = Command.

FACTORY.createApplyChangesCommand();

apply.setConnection(getConnection());

apply.execute(root);

	 In	the	absence	of	instruction	
(configuration)	to	do	otherwise,	the	

DAS	will	scan	the	change	history	and	
generate	the	create/update/delete	
(CUD)	statements	necessary	to	flush	
the	changes	to	the	database.	Since	
we	just	changed	a	single	property	of	a	
single	data	object,	the	change	history	
processing	produces	a	single	state-
ment	to	be	executed:

update CUSTOMER set LASTNAME = ‘Williams’

where ID = 10021

	 There	are	a	couple	of	things	we’d	
like	to	point	out	here.	The	first	one	
has	nothing	to	do	with	convention	but	
it’s	very	cool.	What	has	been	gener-
ated	here	is	a	“partial	update.”	That	
is,	rather	than	generating	a	complete	
update	statement	that	covers	every	
column	in	the	table,	the	statement	
only	updates	columns	that	relate	to	
changed	data	object	properties	(i.e.,	
just	the	last	name).
	 Partial	updates	may	not	be	the	
right	way	to	go	for	some	applications	
so	CUD	generation	can	be	overridden	
with	user-supplied	CUD	statements.	
However,	partial	update	is	a	good	fit	
for	many	applications	and	with	it	you	
can	avoid	a	great	deal	of	configura-
tion	or	additional	programming.	Not	
only	that,	partial	updates	provide	a	
performance	boost	for	updates	to	
tables	with	very	wide	rows	and	are	
also	useful	for	avoiding	database	trig-
gers.
	 The	other	point	we	want	to	make	
has	to	do	with	the	“where”	clause	
(“where	ID	=”)	of	the	generated	update	
statement.	Since	we	mean	to	update	
the	specific	table	row	that’s	associated	
with	the	modified	data	object,	we	need	
to	qualify	the	update	statement	with	a	
unique	row	identifier.	So	this	is	where	
another			piece	of	convention	is	used.	If	
the	DAS	isn’t	provided	with	configura-
tion	that	defines	a	unique	identifier	for	
the	data	object	Type	then	the	DAS	will	
look	for	one.	There’s	no	magic	here;	if	
there’s	a	property	named	ID	then	the	
DAS	will	assume	it’s	unique	and	use	it	
in	the	“where”	clause.
	 We’ve	provided	a	description	of	the	
convention	currently	employed	by	the	
DAS.	But	there’s	more	on	the	way.	We’re	
currently	looking	to	add	more	capabil-
ity	based	on	conventions	for	gener-
ated	columns,	optimistic	concurrency	
control,	and	relationship	definition.

 Figure 3 DMA operation by abstraction and selection

JDJ.SYS-CON.com34 August 2006

Sdo

	 The	use	of	convention	isn’t	revolu-
tionary	or	even	new,	but	it	is	gain-
ing	renewed	respect.	This	may	be	a	
reaction	to	the	configuration-heavy	
frameworks	we’ve	been	using	in	recent	
years.	Notably,	Ruby	on	Rails,	Maven,	
JUnit,	Wiki	and	many	other	“agile”	
frameworks	make	considerable	use	
of	convention	over	configuration.	It’s	
amazing	what	can	be	done	easily,	and	
how	much	coding	and	configuration	
can	be	avoided	with	these	tools	by	
adhering	to	simple	conventions.
	 We’ve	explained	how	the	DAS	lever-
ages	the	capabilities	of	SDO	and	makes	
use	of	convention	to	provide	a	progres-
sive	programming	model.	Now	we’ll	
walk	through	a	complete	example	that	
demonstrates	a	few	more	RDB	DAS	
capabilities.

A Complete Example (CompanyWeb)
	 In	this	example	we’ll	display	the	
steps	involved	in	writing	a	simple	
application	to	work	with	companies	
and	their	related	departments.	First	we	
need	to	introduce	a	new	DAS	con-
cept;	the	DAS	Configuration	model.	
Although	we’re	adding	more	options	
for	leveraging	conventions,	there	are	
still	capabilities	in	the	DAS	that	require	
configuration	such	as	relationship	
definitions	and	database-generated	
IDs.	
	 The	DAS	Configuration	can	be	built	
up	programmatically	or	loaded	via	an	
XML	file.	In	this	example	we’ll	use	the	
XML	file	approach.
	 We’ll	begin	by	accessing	data	from	
the	Company	table,	defined	as	follows:

COMPANY:

ID NAME

We	start	by	creating	an	XML	file	and	
add	descriptive	information	for	the	
database	tables	and	columns.	The	
snippet	of	XML	below	tells	the	DAS	
that	the	COMPANY	table	has	a	primary	
key	column	named	ID	that	is	auto-
generated	by	the	database:

<Table name=”COMPANY”>

 <Column name=”ID” primaryKey=”true”

generated=”true”/>

 </Table>

Notice	that	we	do	not	define	the	NAME	
column.	There’s	nothing	special	about	
this	column	so	we’ll	just	take	the	con-

ventional	behavior	offered	by	the	DAS.
	 In	the	earlier	examples	we	had	the	
client	pass	a	connection	instance	to	
the	DAS	for	use	during	execution.	An	
alternative	is	to	define	connection	
properties	in	the	Config	and	have	the	
DAS	manage	the	connection	for	us.	
Here	we	choose	to	use	a	DataSource	
and	provide	the	JNDI	name:

<ConnectionProperties dataSource=”java:

comp/env/jdbc/dastest”/>

Finally,	we’ll	define	a	Command	that	
the	DAS	will	use	to	access	the	data.	The	
following	command	will	retrieve	all	
companies	from	the	database:
		
 <Command name=”all companies” SQL=”select

* from COMPANY” kind=”Select”/>

	 Now	we	can	write	an	application	
to	access	the	data	and	create	a	class	
called	CompanyClient	to	handle	in-
teraction	with	the	DAS.	However,	first	
we’ll	introduce	a	new	DAS	concept:	the	
CommandGroup.
	 A	CommandGroup	is	a	logical	
grouping	of	commands	and	associ-
ated	configuration	data	that	serves	two	
main	purposes.	Applications	will	often	
define	commands	that	require	the	
same	configuration	information	and	
a	CommandGroup	binds	the	defined	
commands	and	the	provided	configu-
ration	data.	For	example,	commands	
in	the	same	CommandGroup	will	
share	the	same	connection	properties	
and	relationship	definitions.
	 Secondly,	a	CommandGroup	is	
initialized	with	Commands	that	it	pro-
vides	by	name.	Since	the	client	retrieves	
commands	by	name	and	then	executes	
them,	the	SQL-specific	configuration	
can	be	contained	in	the	group	and	
isolated	from	the	application.	In	theory,	
the	same	application	could	switch	to	
using	some	other	data	store	technol-
ogy	by	changing	the	way	the	Config	is	
initialized.	For	example,	a	Config	could	
be	initialized	to	use	static	SQL	or	even	a	
non-relational	back-end.
	 Since	our	application	will	use	com-
mands	that	share	configuration,	we’ll	use	
a	CommandGroup	and	create	one	Com-
mandGroup	instance	in	CompanyClient	
and	initialize	it	with	our	XML	file.

private CommandGroup commandGroup =

 CommandGroup.FACTORY.createCommand

Group(getConfig(“CompanyConfig.xml”));

private InputStream getConfig(String file-

Name) {

 return getClass().getClassLoad-

er().getResourceAsStream(fileName);

 }

Now	we’ll	create	a	method	to	return	a	
List	of	Company	DataObjects:

 public List getCompanies() {

 Command read = commandGroup.

getCommand(“all companies”);

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY”);

 }

At	this	point,	we	have	an	application	
capable	of	returning	a	list	of	all	compa-
nies	in	the	database.	Now	let’s	add	in	
another	database	table,	Department:

DEPARTMENT:

ID NAME LOCATION NUMBER COMPANYID

The	Department	table	is	also	using	a	
primary	key	named	“ID”	that	is	auto-gen-
erated	by	the	database,	so	its	table	defini-
tion	will	be	similar	to	that	of	Company:
			
<Table name=”DEPARTMENT”>

 <Column name=”ID” primaryKey=”true”

generated=”true”/>

</Table>

	 We	have	to	define	the	relationship	
between	Company	and	Department	so	
that	the	DAS	can	construct	a	dynamic	
SDO	model	with	a	relationship	be-
tween	the	two	and	correctly	maintain	
those	relationships	in	the	database.	
The	following	XML	snippet	names	the	
relationship,	associates	the	keys,	and	
specifies	the	cardinality:

<Relationship name=”departments”

 primaryKeyTable=”COMPANY”

 foreignKeyTable=”DEPARTMENT”

many=”true”>

 <KeyPair primaryKeyColumn=”ID” foreignKe

yColumn=”COMPANYID”/>

</Relationship>

	 Now	we	can	add	a	command	to	
return	all	companies	and	departments:

<Command

JDJ.SYS-CON.com36 August 2006

 name=”all companies and departments”

 SQL=”select * from COMPANY left outer

join DEPARTMENT on COMPANY.ID =

 DEPARTMENT.COMPANYID”

 kind=”Select”/>

	 Next	we	add	a	method	to	Compa-
nyClient	to	access	and	execute	this	
command.	This	method	returns	a	list	
of	Company	data	objects,	but	since	
the	command	employs	a	join	with	
Departments,	each	Company	will	have	
its	related	Department	data	objects	
associated	with	it.

 public final List getCompaniesWithDepart-

ments() {

 Command read = commandGroup.

getCommand(“all companies and depart-

ments”);

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY”);

 }

	 Next	we’ll	add	the	ability	to	retrieve	
a	single	company	and	all	its	depart-
ments.	The	configuration	file	is	up-
dated	with	this	command	definition:
	
<Command name=”all departments for company”

 SQL=”select * from COMPANY left join

DEPARTMENT on COMPANY.ID =

 DEPARTMENT.COMPANYID where COMPANY.ID

= :ID” kind=”Select”/>

	 Note	that	we	have	defined	a	named	
parameter	“:ID”	in	the	SQL	query.	The	
CompanyClient	uses	the	code	below	to	
access	this	command:

public final List getDepartmentsForCompany

(int id) {

 Command read = commandGroup.

getCommand(“all departments for company”);

 read.setParameterValue(“ID”, new

Integer(id));

 DataObject root = read.execute-

Query();

 return root.getList(“COMPANY[1]\

departments”);

 }

	 Now	we’ll	add	a	write	capability	to	
CompanyClient.	Since	we’ll	let	the	DAS	
generate	the	CUD	statements,	no	ad-
ditions	are	necessary	to	the	configura-
tion	file.

public final void addDepartmentToFirstCom-

pany() {

 Command read = commandGroup.

getCommand(“all companies and depart-

ments”);

 DataObject root = read.execute-

Query();

 DataObject firstCustomer = root.

getDataObject(“COMPANY[1]”);

 DataObject newDepartment = root.

createDataObject(“DEPARTMENT”);

 newDepartment.setString(“NAME”,

“Default Name”);

 firstCustomer.

getList(“departments”).add(newDepartment);

 ApplyChangesCommand apply = com-

mandGroup.getApplyChangesCommand();

 apply.execute(root);

 }

	 A	complete	example	based	on	this	
company	and	department	scenario,	
including	a	Web	application	used	to	
access	the	CompanyClient,	is	avail-
able	at	the	Apache	Tuscany	incubator	
project.	The	readme	is	available	at	
http://incubator.apache.org/tuscany/
samples/java/samples/das/company-
web/readme.htm.
	 The	complete	source	is	here:	http://
svn.apache.org/repos/asf/incubator/
tuscany/java/samples/das/company-
web/
	 In	the	space	of	this	article	we’ve	
shown	some	of	the	main	capabilities	
of	the	Relational	Database	Data	Access	
Service	being	developed	at	Apache’s	
Tuscany	incubator	project.	Here	are	
other	important	supported	capabili-
ties:
•	 Statically	typed	(generated)	SDO	

DataObjects
•	 Optimistic	concurrency	control
•	 Stored	procedures
•	 External	transaction	participation
•	 Write-operation	ordering	(database	

constraints)
•	 Simple	name	mapping	(Table/

Column	->	SDO	Type/property)
•	 Column-type	conversions	
•	 Paging

Business Benefits
	 Object-to-Relational	Data	Access	
–	The	RDB	DAS	provides	a	capable	
and	flexible	data	access	mecha-
nism	to	applications	integrating	

SDO	technology.	By	employing	the	
DAS,	developers	avoid	developing	
a	custom	data	access	framework,	
a	task	that’s	tedious,	complex,	and	
error-prone.
	 Integrated	with	SDO	–	The	Transfer	
Object	pattern	is	often	used	by	appli-
cations	to	move	persistent	state	from	
one	part	of	the	application	archi-
tecture	to	another.	This	is	especially	
true	if	the	data	movement	requires	
serialization.	Such	an	application	can	
employ	some	object-to-relational	
technology	(JDO,	EJB,	Entity	beans,	
etc.)	to	retrieve	the	data	from	a	back-
end	data	store	and	then	copy	the	data	
to	the	DTO	for	transfer	around	the	
application.
	 The	creation	of	separate	TOs	isn’t	
necessary	for	an	SDO-integrated	ap-
plication	using	the	DAS	because	the	
SDOs	themselves	are	easily	serialized	
to	XML.	As	a	bonus	to	the	TO	pat-
tern,	the	SDOs	“remember”	changes	
made	to	them	and	this	memory	is	
preserved	through	serialization/de-
serialization.

Conclusion
	 The	RDB	DAS	and	SDO	provide	a	
simple	and	powerful	way	to	access	
and	work	with	relational	data.	The	
RDB	DAS	lets	developers	work	with	
SDO	without	building	custom	data	
access	solutions	since	the	DAS	works	
in	terms	of	SDOs.	It	simplifies	data	
access	by	hiding	many	of	its	com-
plexities	while	still	letting	developers	
harness	more	powerful	features	in	
complex	scenarios.	
	 Because	the	RDB	DAS	integrates	
SDO	technology,	it’s	a	natural	fit	for	
data	access	in	the	SCA	framework.	
In	fact,	an	RDB	DAS	implementation	
is	evolving	as	part	of	the	“Tuscany”	
SOA	Apache	incubator	project	
along	with	implementations	of	SCA	
and	SDO.	The	DAS	is	also	on	the	
roadmap	for	the	upcoming	SDO	3.0	
specification.
	 The	examples	and	code	included	in	
this	article	can	be	had	from	the	Apache	
Software	Foundation	and	licensed	ac-
cording	to	the	terms	of	the	2.0	Apache	
License.
	 More	information	about	the	RDB	
DAS	and	the	implementation	under	
development	can	be	found	at	http://
incubator.apache.org/projects/tus-
cany.			

37August 2006JDJ.SYS-CON.com

he	client/server	development	model	prevalent	in	
the	mid-1990’s	resulted	in	extremely	easy-to-build	
rich	GUI	applications	that	interacted	directly	with	
a	relational	database.	4GL	tools	such	as	Visual	
Basic	and	PowerBuilder	let	even	junior	developers	

visually	compose	both	the	presentation	and	most	of	the	
backend	data	binding.	While	this	made	for	impressive	
Rapid	Application	Development	(RAD)	productivity,	the	
client/server	architecture	was	severely	challenged	when	
dealing	with	real-time	environments	where	the	data	
changes	rapidly	and	applications	require	visibility	to	the	
correct	data	at	all	times.	As	a	result,	client	applications	
were	forced	to	poll	the	database	continuously	to	check	
for	changes.	

	 The	same	is	true	in	today’s	browser-based	or	Java	Swing-
based	multi-tier	applications,	where	the	user	is	forced	to	
issue	a	screen	refresh	to	view	the	latest	state.	Real-time	
applications	such	as	a	trader	desktop	where	the	screens	are	
continuously	refreshed	are	still	sophisticated	proprietary	ap-
plications	that	require	specialized	application	design	to	push	
events	from	backend	servers	to	the	GUI	clients.	Such	applica-
tions	result	in	hundreds	or	even	thousands	of	views	like	this:	
Maintain	a	continuous	view	of	all	Intel	and	Dell	orders	placed	
today	and	notify	me	when	AMD	moves	up	or	down	by	5%.	
	 However,	today	a	new	“push-based”	architecture	enables	
data	changes	to	be	monitored	continuously	in	a	backend	data	
management	system	and	changes	continuously	pushed	to	
client	applications,	maintaining	a	real-time	view	at	all	times.

The promise of a robust new
development model

by Gideon Low & Jags Ramnarayan

T

JDJ.SYS-CON.com38 August 2006

39August 2006JDJ.SYS-CON.com

Traditional Databases Are Passive
Most	complex	GUI	screens	use	complex	SQL	–	multi-table	
joins,	column	aggregations,	and	multiple	predicates	for	fil-
tering,	grouping,	etc.	to	construct	the	dataset	being	viewed.	
Consider	a	real-time	application	like	a	financial	stock	
monitoring	program	or	a	traffic	management	system	with	
hundreds	of	concurrent	clients	with	equally	large	numbers	
of	complex	queries	that	are	continuously	being	executed	
once	every	second.	The	traditional	relational	database	that’s	
built	for	storing	data	efficiently	and	guaranteeing	consis-
tency	won’t	be	able	to	cope	with	this	demand.	Relational	da-
tabases	are	passive,	executing	queries	on	sitting	data	only.	
Today’s	complex	applications,	however,	require	a	system	
that	can	very	efficiently	execute	queries	as	data	streams	in.	

A SQL Continuous Query Engine – An Active Data
Management System
	 By	building	a	database	engine	designed	specifically	so	
queries	can	remain	standing	and	active	–	or	continuous	
—	the	scalability,	reactivity,	and	organization	of	multi-tiered	
data-centric	applications	can	be	radically	altered.	Continu-
ous	queries	(CQ)	let	users	get	new	results	from	a	database	
without	having	to	issue	the	same	query	repeatedly.	
	 Queries	no	longer	have	to	be	reissued	to	refresh	result	
sets,	logic	that	has	to	execute	in	response	to	complex	chang-
es	in	a	data	model	can	actively	register	interest	directly	from	
the	source,	and	business	logic	can	be	safely	co-located	with	
application	data	in	a	relational	model	without	scalability	
limitations.
	 Continuous	querying	technology	works	through	an	en-
gine	that	efficiently	groups	and	filters	predicates	from	large	
numbers	of	queries,	enabling	several	key	things	to	happen:	
•	 When	the	server	first	gets	a	continuous	query,	it	not	only	

replies	with	an	initial	result	set,	but	it	analyzes	the	query	
predicates	(selection	criteria)	to	group	it	logically	with	
other	similar	queries.	

•	 The	engine	can	then	quickly	identify	what	continuous	
queries	are	affected	by	any	given	data	modification	(an	
insert,	update,	or	delete	against	the	relationally	struc-
tured	operational	data).	

•	 The	engine	can	send	only	the	deltas	to	each	CQ	client	
needed	to	update	its	existing	result	set,	in	effect	exactly	
the	data	necessary	for	the	client	to	hold	a	materialized	
view	of	data	from	the	server.

	 The	inherent	power	of	this	technology	lies	in	both	its	
simplicity	and	natural	scalability.	With	an	in-memory	
database	and	some	very	simple	extensions	to	existing	query	
languages,	we’re	suddenly	capable	of	building	a	middle-tier	
that	combines	all	of	a	database’s	operational	benefits	and	
none	of	its	limitations.	At	the	same	time,	we	can	build	ap-
plication	server	clients	that	express	interest	in	data	through	
conventional	queries	without	having	to	trade	performance	
for	data	currency	or	functional	sophistication	for	develop-
ment	effort.

Where Does It Apply?
While	the	focus	of	this	article	is	to	illustrate	the	power	of	
CQ	to	provide	real-time	view	maintenance	in	graphi-
cal	user	interfaces,	the	power	of	this	paradigm	is	well	
beyond	this.	Continuous	querying	is	part	of	a	new	data	
management	paradigm	called	stream	data	processing	
(see	the	References	section	below	for	further	informa-
tion)	and	can	be	used	to	monitor	multiple	streaming	
sources	of	data,	analyze	these	streams	for	patterns	of	
interest,	and	respond	instantaneously.	The	sources	of	
the	data	could	be	disparate	–	RFID	sensor	events,	events	
from	business	applications	across	an	enterprise,	exter-
nal	sources,	etc.
	 If	the	applicability	of	the	technology	were	to	be	charac-
terized	in	two	points	they	would	be:
1.	Data	is	changing	very	rapidly	and	decisions	have	to	be	

Gideon Low is a senior

technical architect at

GemStone Systems.

Gideon has over 10 years

of experience in the

development, manage-

ment, and sales of high-

performance large-scale

distributed systems. His

focus over the last seven

years has been in high-

speed electronic trading

systems as CTO at Silicon

Summit Technologies (A

FIX/OMS vendor) and

VP, client connectivity

technology at Lehman

Brothers. Gideon joined

GemStone in 2005 as

a senior architect to

help bring GemStone’s

GemFire product to Wall

Street’s most demand-

ing high-performance

environments.

 Figure 1

JDJ.SYS-CON.com40 August 2006

made	instantaneously.	
2.	The	system	can	analyze	hundreds	to	thousands	of	pat-

terns	(rules	or	query	predicates)	with	thousands	of	
events	pouring	in	every	second.

Leveraging CQ in a Financial Order Tracking System
	 A	great	example	of	a	system	with	stringent	real-time	data	
requirements	is	a	securities	trading	order-tracking	system.	
Diverse	event	streams	such	as	customer	orders,	order	ex-
ecutions,	and	market	data	quotes	must	be	combined	into	a	
continuously	updated	view	provided	to	multiple	end	users.	
Early	implementations	—	built	at	a	time	of	much	smaller	
order	volumes	and	slower	workflows	–	used	client/server	
architectures	that	required	GUIs	to	poll	the	database	for	
updates.
	 As	trading	volumes	grew	and	firms	realized	that	they	
could	gain	a	competitive	advantage	with	faster	trading	
systems,	we	started	seeing	trading	application	servers	that	
could	publish	real-time	updates	to	trader	GUIs.	Imple-
menting	this	functionality	efficiently	—	with	predictable	
low-latency	and	high	throughput	–	required	a	much	more	
sophisticated	development	model	than	client/server	could	
provide	and	so	the	effort	to	build,	maintain,	and	operate	
these	systems	grew	quickly.	The	example	in	Figure	1	strips	
functionality	to	its	bare	essentials	to	illustrate	the	relative	
merits	of	conventional	and	CQ	architectures.

Data Model
	 For	simplicity’s	sake,	our	example	uses	only	two	tables	
—	Orders	and	Quotes,	as	shown	in	Table	1.
	 The	Orders	table	simply	tracks	the	orders	clients	have	
sent	you	and	the	number	of	shares	filled	in	each	one.	The	
Quotes	table	keeps	track	of	market	activity	for	any	symbol	
that	exists	in	the	Orders	table,	so	the	GUI	displays	market	
activity	associated	with	the	order	to	the	responsible	broker.	
This	means	that	we	have	three	event	streams	coming	into	
the	system:	orders	from	clients,	order	fills	from	a	stock	

exchange,	and	market	data	quotes	from	a	quote	feed.	These	
three	event	streams	must	be	coalesced	into	a	coherent	view	
within	the	Order	Tracking	System.	Naturally,	in	the	real	
world	these	systems	are	much	more	sophisticated	—	requir-
ing	transactions,	many	more	data	entities	and	streams,	and	
complex	user	interactions,	but	we’ll	keep	things	simple	and	
explain	later	how	the	example	may	be	extrapolated	to	ad-
ditional	complexity.
	 We’ll	describe	the	components	and	options	for	this	
use	case	in	three	sections.	The	first	shows	how	to	build	
a	simple	database	publisher	application	for	quotes	and	
orders.	The	second	shows	how	you	might	build	a	client	
application	using	plain	JDBC,	or	with	the	addition	of	da-
tabase	and	JMS	queues,	and	third	how	you’d	build	a	client	
application	with	Continuous	Querying.	Note	that	the	full	
source	code	and	pre-configured	runtime	configurations	
for	the	DataPublisher	CQExampleClient	applications	are	
available	for	download	at	http://www.gemstone.com/
download/.

A Simple Data Publisher for an Order Tracking System
	 The	Data	Publisher	application	is	quite	straightforward.	
It	instantiates	Order	and	Quote	generation	simulators	and	
handles	their	events	by	“publishing”	them	in	a	JDBC	data-
base	with	SQL	Insert	and	Update	statements.	
	 Let’s	take	a	closer	look	at	the	Publisher	application	by	
inspecting	some	of	its	code.	The	classes	we	need	to	under-
stand	are	SimpleDataPublisher,	SimpleQuoteGenerator,	and	
SimpleOrderGenerator.		
•	 SimpleOrderGenerator	has	a	pre-defined	list	of	Orders	

and	Customers.	Its	constructor	has	only	one	argu-
ment	—	a	listener	that	implements	the	methods	
onNewOrder(SimpleOrder	o)	and	onOrderUpdate(Sim
pleOrder	o).	In	the	constructor	it	creates	a	basket	of	63	
orders	(which	results	in	onNewOrder()	callbacks),	and	
then	spawns	a	thread	to	gradually	fill	the	orders	by	incre-
menting	the	fillQty	property	of	each	one.	

 Figure 2

Jags Ramnarayan is the

chief architect for the high-

performance, distributed

data management product

line at GemStone Systems.

He puts on multiple hats

- evangelizing the technol-

ogy, exploring require-

ments with customers,

and managing the overall

direction of the architecture

decisions. In the past Jags

participated in several Java

and W3C standards for

GemStone and BEA. On the

side, Jags is also pursuing

a MBA degree, but hopes

to remain technically

focussed.

41August 2006JDJ.SYS-CON.com

•	 SimpleQuoteGenerator	generates	simple	market	data	
quote	streams	in	response	to	calls	to	its	addSymbol	
(String	symbol)	method.	It’s	constructed	with	a	listener	
that	implements	onQuote	(SimpleQuote	q),	and	it	
spawns	a	thread	that	randomly	updates	each	Symbol’s	
quote	at	a	steady	rate.	

	 SimpleDataPublisher	connects	to	a	JDBC	database	with	
a	JDBC	driver,	either	creates	or	clears	out	the	Quote	and	
Order	tables	with	DDL/DML	statements,	and	then	uses	
the	two	generator	classes	as	event	sources.	Each	generator	
callback	event	(onQuote(),	onNewOrder()	and	onOrderUp-
date())	fires	logic	to	perform	a	SQL	INSERT	or	UPDATE	to	
the	CQ	server,	thus	creating	or	modifying	records	in	the	
Quote	and	Order	tables.	It	contains	only	the	three	following	
members:	

Connection c = null; // The JDBC Connection to the CQ Server

SimpleQuoteGenerator quoteGenerator = new SimpleQuoteGenerator (

this);

SimpleOrderGenerator orderGenerator = new SimpleOrderGenerator (

this);

	 The	constructor	of	SimpleDataPublisher	looks	like	Listing	2.
	 Using	a	handy	helper	class	to	hide	the	boring	details,	
the	code	gets	a	handle	on	a	valid	JDBC	Connection	object,	
creates	or	clears	the	necessary	tables,	initializes	the	Or-
derGenerator	(which	causes	an	onNewOrder()	callback	for	
each	new	order),	and	then	starts	the	QuoteGenerator	and	
OrderGenerator	threads	to	initiate	the	event	streams.	
	 Note	that	for	each	new	order	created,	SimpleDataPub-
lisher	calls	the	SimpeQuoteGenerator.addSymbol()	method	
to	register	a	new	Symbol	for	quote	generation	—	thus	
making	sure	that	we	get	quotes	for	each	symbol	handled	by	
system	(duplicate	symbols	are	ignored).
	 Each	time	SimpleDataPublisher	gets	a	callback	invoca-

tion,	it	creates	a	SQL	statement	and	submits	it	to	the	CQ	
Engine.	For	example,	when	onUpdatedOrder()	fires,	the	
logic	in	Listing	1	executes:	
	 You	can	see	that	this	is	a	very	simple	O/R	mapping	
exercise	plus	JDBC	database	interaction	logic.	The	logic	that	
executes	in	response	to	onQuote()	and	onNewOrder()	is	
fundamentally	the	same	—	and	uses	SQL/JDBC	to	update	
or	insert	a	table	record.	Once	started,	SimpleExamplePub-
lisher	continues	to	update	the	order	and	quote	records	in	
response	to	the	callbacks	it’s	getting	from	the	generators.	
This	is	a	good	time	to	reflect	on	the	how	this	fits	with	your	
existing	experience	—	the	type	of	code	above	already	exists	
in	most	systems,	but	how	often	does	it	serve	as	BOTH	a	
database	update	and	a	notification	to	systems	that	have	
previously	queried	the	updated	record?
	 Now	that	we	have	an	application	that	can	publish	our	order	
and	quote	data	to	a	JDBC	database,	let’s	explore	different	ways	
of	building	the	client	(or	subscriber)	application.	We’ll	describe	
several	approaches	in	varying	levels	of	detail:	JDBC	polling,	
JDBC	with	simple	JMS-based	change	notifications,	and	JDBC	
with	continuous	querying.	To	display	data	in	a	Swing	GUI,	
we’ll	use	a	very	handy	component	called	the	QuickTable	(see	
http://quicktable.org	for	more	info),	which	can	build	a	very	
nice	JTable	from	nothing	more	than	a	JDBC	ResultSet.

Maintaining Real-Time Views Using Continuous Polling
	 A	simple	and	somewhat	naïve	implementation	would	let	
the	user	set	a	refresh	interval	and	continuously	re-execute	
the	query	to	refresh	its	view.	The	code	in	Listing	3	illustrates	
the	JTable	and	the	use	of	a	thread	to	continuously	refresh	
the	view.	
While	simple,	this	method	has	several	obvious	disadvan-
tages:
(1)	With	many	concurrent	views	across	hundreds	of	trader	

desktops,	the	database	will	be	inundated	with	SQL	select	
requests.	In	a	more	realistic	application	the	queries	will	

be	more	complex	and	the	volume	of	data	much	
larger,	causing	the	database	to	buckle	under	pres-
sure.
(2)	It’s	quite	inefficient	to	continuously	re-execute	
the	query,	particularly	when	the	underlying	data	
hasn’t	changed.	This	is	especially	true	when	work-
ing	with	obscure	stocks	that	may	change	only	a	few	
times	during	the	trading	day.

View Maintenance Using JMS
	 The	most	common	approach	in	use	today	for	
real-time	information	management	is	to	employ	
messaging	to	capture	and	route	events	from	the	
backend	database.	Rather	than	route	every	single	
event,	active	filtering	can	be	done	in	the	backend	
servers	through	the	use	of	JMS	selectors.	More	
information	on	JMS	and	JMS	selectors	can	be	found	
at	http://java.sun.com/products/jms/.
	 Modern	databases	all	support	the	asynchronous	
capture	and	propagation	of	database	events.	For	
instance,	with	Oracle,	a	simple	mechanism	would	
be	to	use	a	row-level	trigger	on	the	order	and	quote	
table	and	route	the	DML	events	to	an	Oracle	Ad-
vanced	Queue	(AQ).	The	AQ	can	then	be	accessed	

Table 1

Table Orders:
Column Name Data Type Comment
OrderID Varchar Unique Identifier for an Order and the Primary Key of this table.
Symbol Varchar What you want to order (e.g., IBM, MSFT, etc.).
Price Numeric Price you want to buy or sell (only used if OrderType is the “Limit”).
Quantity Integer How many shares to buy or sell.
Side Char(4) Either “Buy” or “Sell.”
OrderType Char(6) Either “Market” or “Limit.”
FilledQty Integer How many shares have been filled on the order so far.
 When the order is completely filled, this equals Quantity.
Client Varchar The name of the Client who sent you this order.
UpdateTimestamp DateTime Timestamp of the last update to row.

Table Quotes:
Column Name Data Type Comment
Symbol Varchar For example, IBM, MSFT, etc. Also Primary Key.
Bid Numeric Current price to sell.
Ask Numeric Current price to buy.
BidSize Integer Number of shares available at Price.
AskSize Integer Number of shares available at Price.
LastQty Numeric Quantity of the last executed trade.
LastPrice Numeric Price of the last executed trade.
UpdateTimestamp DateTime Timestamp of the last up

JDJ.SYS-CON.com42 August 2006

STAND ON THE
SHOULDERS OF GIANTS

RCP Developer

RCP Developer™

SWT Designer™

RCP Developer™

 WindowTester™ RCP Packager™

from	remote	machines	as	a	JMS	destination	(Queue).	
	 The	code	in	Listing	4	illustrates	how	our	example	in	
Figure	2	can	be	changed	to	make	use	of	JMS	events	to	
refresh	the	JTable.	Though	this	method	doesn’t	require	the	
application	client	to	continuously	execute	queries,	it	still	
requires	the	client	to	re-execute	the	complete	query	to	the	
database.	One	could	argue	that	the	database	event	genera-
tor	could	provide	sufficient	information	in	the	message	so	
as	to	reconstruct	the	client	JTable	from	the	message	itself.	
But,	in	most	real-life	situations,	the	query	could	be	quite	
complex	involving	joins,	complex	query	predicates,	projec-
tions	involving	aggregate	column	values	and	such,	making	
it	nearly	impossible	to	calculate	how	exactly	the	client-side	
view	has	been	impacted.	
Again,	much	like	the	first	naïve	approach,	with	many	con-
current	clients	with	hundreds	or	even	thousands	of	views	
to	maintain,	the	approach	quickly	stretches	the	limits	of	
database	scalability.	

Real-Time View Maintenance with Continuous Query
	 Now	that	we	have	examined	polling-	and	messaging-
based	approaches	to	building	a	client	application	for	Order	
Status	Tracking,	let’s	take	a	look	at	how	we	might	build	a	
better	mousetrap	with	Continuous	Querying	(See	Figure	
3).	To	build	this	example,	we	use	the	GemFire	Real-Time	
Events	(RTE)	Server	—	a	JDBC	in-memory	database	product	
that	provides	a	robust	CQ	Engine.
	 The	first	requirement	is	to	re-configure	the	DataPublisher	
application	to	connect	to	the	RTE	CQ	Server	JDBC	database	
instead	of	a	traditional	RDBMS.	Thanks	to	standard	JDBC,	
this	only	means	changing	the	JDBC	driver	classname	and	
connection	URL	parameter.	Nothing	else	in	the	DataPub-
lisher	applications	needs	to	change	as	the	database	interac-
tion	is	all	in	standard	SQL-92,	which	all	JDBC	databases	
support.
	 The	client	side	is	encapsulated	in	the	CQExampleGUI	
class,	which,	again,	requires	very	little	code	beyond	stan-

dard	JDBC.	Less,	in	fact,	than	the	polling-	and	JMS-based	
client	examples	described	above.	The	main	difference	is	
the	addition	of	some	logic	to	handle	Continuous	Query	
callbacks	instead	of	a	JMS	listener	or	polling	thread.	All	of	
the	logic	is	encapsulated	in	the	CQExampleGUI	class:
	 For	this	simple	example,	CQExampleClient	has	only	three	
important	members:	

Connection c = null; // The JDBC Connection to the CQ Server

CQManager cqManager; // The Continuous Query manager

DBTable dBTable1 = null; // A handy QuickTable for rich visual

display

	 The	constructor	for	CQExampleGUI	looks	like	Listing	5.	
With	these	few	lines	of	code,	we’ve	painted	a	nice	GUI	with	
the	contents	of	our	simple	order	management	database.	Note	
that	though	the	SQL	Select	statement	used	to	initiate	the	
Continuous	Query	is	relatively	simple,	most	Financial	Order	
Tracking	systems	actually	have	a	“view-builder”	screen	that	
lets	users	select	columns	and	filter	conditions,	which	results	
in	much	more	complex	dynamically	generated	SQL.	
	 Now	that	we’ve	built	a	GUI	in	much	the	same	way	as	tradi-
tional	client/server,	what	remains	is	to	handle	the	CQ	update	
events.	The	logic	for	this	is	implemented	in	the	afterResult-
sUpdated	()	method,	which	passes	in	an	CQUpdate	argument	
containing	a	collection	of	RowDelta	objects	and	a	handle	on	the	
refreshed	JDBC	ResultSet.	With	the	convenience	of	a	Quick-
Table,	only	one	line	of	code	is	necessary	to	update	the	GUI:	

dbTable1.refresh (cqUpdate.getResultSet(););

	 In	a	more	sophisticated	application,	you	can	handle	the	
update	in	granular	detail	by	iterating	over	the	provided	
RowDeltas,	which	give	you	the	update	type	(UPDATE,	
INSERT,	or	DELETE),	an	array	representing	the	old	row	
column	values,	an	array	representing	the	new	row	column	
values,	and	a	list	of	the	columns	actually	modified.	In	short,	

 Figure 3

JDJ.SYS-CON.com44 August 2006

everything	you	need	to	handle	exactly	the	data	that	has	
been	modified	in	the	CQ	Engine’s	database	and	nothing	
else.	A	more	sophisticated	CQ	Callback	implementation	
usually	builds	nested	loop	logic	(rows,	then	update	col-
umns)	to	handle	each	delta	individually.
	 The	runtime	sequence	of	events	from	start	to	finish	is	as	fol-
lows:	
1.	The	publishing	application	receives	an	event	from	some	

external	source.	In	response	to	the	event,	it	modifies	
data	in	the	CQ	Engine’s	in-memory	JDBC	database	(i.e.,	
updates	a	filled	quantity	on	an	existing	order).	The	code	
here	is	exactly	the	same	as	with	any	non-CQ	JDBC	data-
base.

2.	The	CQ	Engine	gets	the	update,	applies	it	to	the	data-
base,	and	then	identifies	which	Continuous	Queries	are	
impacted	by	the	data	modification.	This	is	really	the	
magic	that	makes	the	entire	design	pattern	successful.	

3.	The	CQ	Engine	packages	row	deltas	specific	to	each	
Continuous	Query’s	requirements	and	pushes	them	
back	to	the	clients	over	the	JDBC	connection.	Note	
that	these	row	deltas	are	from	the	client’s	perspec-
tive	—	meaning	that	they	represent	added,	modified,	
and	removed	items	from	the	client’s	ResultSet	view.	
An	UPDATE	statement	in	the	CQ	Server	database	can	
thus	lead	to	completely	different	client	view	deltas,	
depending	on	whether	the	table	update	caused	CQ	join	
conditions	to	be	newly	met	(causes	INSERT	RowDelta),	
dropped	out	(causes	DELETE	RowDelta),	or	if	a	previ-
ously	met	condition	continues	to	do	so	(causes	UPDATE	
RowDelta).		

4.	 The	CQ	Clients	update	their	JDBC	ResultSet	objects	with	the	
deltas	and	invoke	any	registered	callbacks	—	in	our	example,	
we	simply	bind	the	ResultSet	to	a	GUI	grid	component.

	 If	you	download	and	run	this	example,	you’ll	see	a	screen	
that	looks	like	Figure	4.
	 Since	the	Publisher	application	is	continuously	
updating	the	CQ	Engine	database’s	Quotes	table	and	
Orders.FilledQty/Orders.OrderStatus	fields,	you’ll	notice	
that	they	keep	changing	several	times	a	second.	Thus	
the	example	shows	how	you	use	a	simple	JDBC	syntax	
to	create	a	continuously	updated	view	of	data	and	then	
handle	some	very	straightforward	callbacks	to	execute	
custom	logic	in	response	to	data	changes.	This	archi-
tecture	is	capable	of	scaling	to	thousands	of	inbound	
events/second	servicing	thousands	of	Continuous	Que-
ries.	

Conclusion
	 Continuous	Query	technology	promises	to	provide	a	ro-
bust	new	development	model	for	applications	that	require	
complex	real-time	views	of	rapidly	changing	operational	
data.	What	makes	this	approach	so	exciting	is	the	ability	to	
combine	the	syntactical	power	of	standard	query	languages	
with	the	performance	and	scalability	required	of	modern	
applications.	
	 Although	we	focused	on	the	basic	functional	aspects	
of	CQ	technology	in	this	article,	you’ll	find	that	the	tools	
on	the	market	have	some	very	advanced	capabilities	as	
well.	Features	such	as	CQs	with	User	Defined	Aggrega-
tions	(UDAs),	advanced	horizontal	scale-out,	trans-
parent	high	availability	and	failover,	intelligent	flow	
control,	distributed	transactions,	and	much	more	are	
either	available	now	or	soon	will	be.	This	is	a	technol-
ogy	worth	keeping	an	eye	on	as	you	encounter	use	cases	
where	client	views	of	operational	data	must	be	continu-
ously	maintained.			

 Figure 4

45August 2006JDJ.SYS-CON.com

Listing 1
StringBuilder sql = new StringBuilder ();
Date timestamp = new Date (o.timestamp); // for the
UpdateTimestamp column.

sql.append (“UPDATE orders SET FilledQty=”);
sql.append (order.fillQty);
sql.append (“, OrderStatus = ‘”);
sql.append (order.orderStatus);
sql.append (“’, UpdateTimestamp=”);
sql.append (timestamp);
sql.append (“WHERE OrderID = ‘”);
sql.append (order.orderId);
sql.append (“’”);

/* For example this might create
UPDATE Orders SET FilledQty=500,
OrderStatus=’Partial Fill’,
UpdateTimestamp=’2006-06-06 12:30:02’
WHERE OrderID = ‘123456’; */

Statement st = c.createStatement (ResultSet.TYPE_SCROLL_
INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
st.executeQuery (sql.toString());

Listing 2
Properties conxProps = new Properties ();
// Use whatever database-specific parameters are required here.
conxProps.setProperty (“endpoints”, “server1=localhost:30303”);
c = initJDBCConnection (conxProps);

// Initialize the Data by creating the necessary tables. If they
already exist,
// DataPublisherHelper deletes their contents instead.
DataPublisherHelper.createOrdersTable (c);
DataPublisherHelper.createQuotesTable (c);

// Initialize orders. The SimpleOrderGenerator will create a
large basket of
// orders. We receive a onNewOrder() callback for each one.
orderGenerator.initOrders();

// Start streaming quotes and order fill notifications
orderGenerator.start();
quoteGenerator.start();

Listing 3
 quick.dbtable.DBTable dBTable1 = null;
java.sql.ResultSet resultSet;

// SQL select to fetch all orders and corresponding quotes for
select financial instruments
static String quotesSql = “SELECT o.Symbol, o.Client, o.Side,
o.Quantity, o.OrderType, o.FilledQty, o.OrderID, o.ClientComment,
q.Bid, “ +
 “q.Ask, “ +
 “q.AskSize, “ +
 “q.BidSize, “ +
 “q.UpdateTimestamp “ +
 “FROM quotes q, orders o WHERE q.Symbol = o.Symbol “ +
 “ AND o.Symbol IN (‘IBM’, ‘INTC’, ‘AMD’, ‘MOT’)”;
// NOTE: The “IN clause” above is typically dynamically configured
based on user choice; There will be numerous such views that are
concurrently monitored by the user
// Initialize the GUI table and start the monitor thread
 public void initOrderQuoteTable() throws Exception {
 {
 // set Frame properties
 setSize(1280,1024);
 setVisible(true);

 //create a new quicktable
 dBTable1 = new DBTable();

 //add to frame
 getContentPane().add(dBTable1);

 // to create the navigation bars for the table
 dBTable1.createControlPanel();

 // Start the polling thread to refresh the OrderQuoteTable
 startPollingThread();

 …..

 }

public void startPollingThread() throws Exception {
Thread pollingThread = new Thread(new Runnable() {

public void run() {
 // < Execute the query on DB and obtain instance of java.sql.
ResultSet
 //Refresh the Jtable
 synchronized (resultSet) { dBTable1.refresh (resultSet); }
 pollingThread.sleep (configuredTimeInterval);
 }
 });
pollingThread.start();
}

Listing 4
// Do the following instead of polling the DB …. Replace startPol-
lingThread above
// Acquire connection of the JMS provider service, start a non-
transactional session on the DB events queue, create a receiver
on the queue and set the listener to receive the events asynchro-
nously.

queueConnectionFactory = jndiLookup(<JMS provider URL, etc>);
queueConnection = queueConnectionFactory.createQueueConnection();

queueSession = queueConnection.createQueueSession(false, Session.
AUTO_ACKNOWLEDGE);
queue = jndiLookup(queueName);

// Use JMS message selector to limit events routed to Jtable cli-
ent process
// Note that ‘symbol’ would have to be explicitly set as a JMS
header property when message
// is constructed
String selector = “symbol IN (‘IBM’, ‘INTC’, ‘AMD’, ‘MOT’)”;
queueReceiver = queueSession.createReceiver(queue, selector);

dbEventListener = new DBEventListener();
queueReceiver.setMessageListener(dbEventListener);
queueConnection.start();

// Implement the DBEventListener; Implements javax.jms.
MessageListener interface
public class DBEventListener implements MessageListener {

 public void onMessage(Message message) {
 try {
< Execute the query on DB and obtain instance of java.sql.
ResultSet
 //Refresh the Jtable
 synchronized (resultSet) { dBTable1.refresh (resultSet); };
 } catch (JMSException e) {
 <Handle exception>;
 }
 }
 }

Listing 5
// The SQL we’ll use as a Continuous Query
String CQSql = “SELECT * FROM Orders, Quotes WHERE Quotes.
Symbol=Orders.Symbol”;

// Create a new QuickTable for visual display of our JDBC
ResultSet
dBTable1 = new DBTable();

// Add the QuickTable to the Swing frame
frame.getContentPane().add(dBTable1);

// Connect to the Real Time Events engine (essentially the same as
any JDBC connection)
Properties conxProps = new Properties();
conxProps.setProperty (“endpoints”, “server1=localhost:30303”);
c = initCQEngineConnection (conxProps);

// Note that CQManager is specific to the the GemFire RTE CQ
implementation
// Create a CQManager for the Connection
cqManager = CQManager.getCQManager (c);

// Create an register the continuous query using the CQManager and
our SQL String.
CQ exampleCQ = cqManager.create (CQSql);
ResultSet rs = exampleCQ.register (“exampleCQ”, CQSql);

// Populate the GUI QuickTable with the Result Set returned by the
CQ initialization.
 dBTable1.refresh (rs);

// Once the table has been initialized with data, start listening
for CQ Updates .
exampleCQ.setCQListener (this);

JDJ.SYS-CON.com46 August 2006

omputers	can	generally	be	
characterized	into	two	types:	
ones	that	are	designed	to	have	
more	than	one	user	attached	and	
those	intended	for	a	single	user.	

In	the	beginning	almost	all	computing	
was	done	on	large	multi-user	machines,	
partly	due	to	their	expense,	which	
precluded	their	use	to	all	but	large	
institutions	or	wealthy	corporations.	
Mainframes	ruled	this	era	and	excelled	
at	their	role:	providing	a	reliable	com-
puting	platform	for	hosting	databases,	
transaction	servers,	and	centralized	ap-
plications.	The	interaction	was	through	
character-based	screens	that,	while	
providing	fast	and	efficient	green	screen	
access,	was	to	be	their	Achilles	heel.
	 At	the	other	end	of	the	scale	are	per-
sonal	computers.	PCs	have	two	major	
benefits	over	mainframes:	a	lower	cost	
per	unit	and	the	ability	to	host	operating	
systems	with	graphical	user	interfaces.	
GUI	applications	make	use	of	event-
driven	user	interfaces	that	can	respond	
to	fine-grained	mouse,	keyboard,	timer	
and	paint	requests.	This	provides	the	
framework	on	which	everything	from	
shoot-em	up	3D	games,	WYSIWYG	word	
processors,	business	presentations	
with	embedded	video,	and	a	plethora	of	
powerful	desktop	programs	reside.
	 Most	of	the	problems	over	the	20	
years	in	IT	have	occurred	because	one	of	
the	two	ends	of	the	computing	spec-
trum	has	tried	to	venture	into	the	other’s	
domain.	PCs	tried	to	become	multi-user	
servers	and	big	iron	boxes	attempted	
presentation	logic.
	 The	computing	section	of	my	local	
science	museum	has	an	exhibit	showing	
black	and	white	photographs	from	the	
1970s	with	reel-to-reel	tape	drives,	floor-
standing	disk	platters,	and	wardrobe	
CPU	units	filling	an	operations	room.	
Next	to	this	is	a	display	case	with	an	
Altair	8800,	the	sign	teaching	us	how	the	
smaller	machine	replaced	the	room-fill-
ing	mainframe	by	matching	its	comput-

ing	power	at	a	cheaper	cost.	The	analogy	
drawn	is	to	that	of	the	dinosaurs,	where	
the	large	and	inefficient	behemoths	
couldn’t	cope	with	extreme	climate	
change	and	died	out	while	smaller	and	
nimbler	mammals	arose	to	rule	the	
world	in	their	place.
	 The	rise	of	PCs	is	a	huge	phenom-
enon	where,	for	most	of	the	1980s	and	
1990s,	there	were	more	new	PCs	sold	per	
year	than	the	entire	installed	base.	The	
prediction	by	George	Moore	in	1965	was	
that	the	transistor	density	of	semicon-
ductor	chips	would	double	every	18	
months.	This	largely	held	true	for	the	
next	40	years,	benefiting	PCs	that	con-
tinued	to	double	in	speed	while	halving	
in	cost.	For	those	who	were	in	the	game	
of	downsizing	from	mainframes,	this	
enabled	them	to	create	server	farms	by	
simply	daisy-chaining	PCs	together.	
	 The	big	iron	server	guys	have	always	
wanted	to	challenge	the	rise	in	PCs,	
fueled	by	resentment	at	the	insults	of	
“dumb	screen”	and	“legacy	system”	that	
were	being	thrown	at	them.	The	Intern	
et	gave	them	an	opportunity	to	do	this,	
by	enabling	them	to	reinvent	themselves	
as	hosts	for	Web	application	servers	
dishing	up	HTML	to	clients	in	place	of	
3270	or	5250	datastreams.
	 What	has	occurred	is	that	PCs	have	
scaled	up	to	become	servers	and	servers	
have	become	controllers	of	presentation	
through	HTML.	Both	are	poor	compro-
mises	and	I	think	have	hurt	usability,	
resilience,	and	general	IT	efficiency.	The	
trend	in	many	social	systems	can	be	
characterized	as	a	pendulum	that	swings	
between	two	extremes,	politics	being	a	
prime	example	–	once	policies	become	
attempted,	they	fall	short	of	promise	and	
expectations,	allowing	the	previous	failed	
polemic	to	regain	popular	traction.
	 For	the	fast,	nimble	PCs	that	now	
fill	rooms,	their	fate,	ironically,	is	to	be	
replaced	with	smaller	and	faster	modern	
mainframes	that	outperform	them	in	
terms	of	speed,	price,	and	simplicity.	

Because	of	advanced	workload	manage-
ment	techniques,	mainframes	can	be	
driven	harder,	often	running	at	70–90%	
utilization,	while	Wintel	boxes	typically	
only	manage	5%.	While	Moore’s	law	held	
fast	for	the	past	40	years,	the	runway	
has	run	out,	as	physical	laws	govern-
ing	thermal	flux	prevent	any	further	
significant	miniaturization.	A	modern	
Pentium	consumes	100	watts	of	power	
and	generates	more	heat	per	square	
inch	than	exists	inside	a	nuclear	power	
station’s	reactor	core.	The	scalability	of	
a	virtualized	mainframe	is	huge,	with	
benchmarks	showing	that	up	to	20,000	
copies	of	Linux	all	running	Web	servers	
can	co-exist	happily	inside	a	single	box.	
	 For	the	PC,	what	we’re	seeing	now	is	
a	growth	in	applications	that	exploit	its	
capabilities	as	a	first-class	client	desk-
top,	rather	than	a	rendering	engine	for	
dumb	HTML.	For	Google,	the	bastion	of	
all	things	Web,	two	of	their	most	impres-
sive	applications	are	Google	Desktop,	
which	indexes	all	of	a	PC’s	files	and	
provides	a	set	of	integrated	functions	
such	as	chat,	to-do	lists,	phone	clients,	
and	for	mapping	Google	Earth	offers	the	
ability	to	walk	the	earth	in	3D	making	
use	of	the	PC’s	native	graphics	function-
ality	through	DirectX.
	 What	this	should	spell	is	a	new	era	
in	which	the	two	poles	of	computing	
go	back	to	basics	and	rediscover	what	
they’re	best	at	is	doing	what	they	were	
designed	for.	Big	multi-user	serv-
ers	will	continue	to	grow	in	terms	of	
their	capacity	to	become	application	
hosting	giants,	while	PCs	will	enjoy	a	
period	of	rich	applications	that	fully	
exploit	their	graphics	capabilities	and	
provide	a	high-usability	end	point.	
Over	the	past	20	years	the	server	and	
the	client	have	fought	wars	where	each	
has	tried	to	replace	the	other.	What	we	
need	for	the	next	20	is	for	each	to	excel	
at	what	they’re	best	at,	and	for	users	to	
benefit	from	faster,	easier,	and	richer	
software.			

dESktop JaVa ViEwpoint

Joe Winchester
Desktop Java Editor

The Death
of Mediocrity

C

Joe Winchester is

a software

developer

working on

WebSphere

development tools

for IBM in

Hursley, UK.

joewinchester@
sys-con.com

JDJ.SYS-CON.com48 August 2006

uilding	objects	in	the	Eclipse	
IDE	is	simple	–	it’s	a	point-
and-click	solution.	However,	
as	applications	built	on	the	

Eclipse	platform	mature	the	need	for	
building	outside	of	the	IDE	increases.	
This	need	can	be	driven	by	the	
development	team	that	is	striving	to	
perform	agile	development	techniques	
where	builds	are	executed	based	on	
a	file	“check-in”	action	into	an	SCM	
tool.	The	need	can	also	be	driven	by	
IT	governance	where	a	scheduled	and	
audited	production	build	is	required.	
Moving	from	builds	managed	inside	
of	the	Eclipse	platform	to	builds	man-
aged	outside	of	the	Eclipse	platform	
can	be	a	big	task	in	itself.	Don’t	hesi-
tate	to	make	this	jump.	It’s	a	jump	that	
you’ll	find	you	can’t	do	without.	The	
sooner	you	get	out	of	your	point-and-
click	build	process,	the	sooner	your	
application	will	begin	to	mature.
	 Defining	the	build	process	should	
not	be	taken	lightly.	Auditability	
and	traceability	of	built	objects	are	
becoming	increasingly	important	
due	to	IT	compliance	mandates.	This	
means	that	your	builds	must	become	
more	traceable	than	a	point-and-click	
process.	Don’t	make	the	mistake	of	
addressing	the	issue	of	building	out-
side	of	the	Eclipse	IDE	long	after	the	
application	has	grown	to	an	unman-
ageable	size.	Delaying	the	inevitable	
only	results	in	a	poorly	managed,	
unplanned,	ad	hoc	build	process	that	
isn’t	sustainable,	can’t	meet	IT	compli-
ance,	and	involves	expensive	hidden	
costs	in	maintenance	and	fixes.
	 There	are	three	ways	of	addressing	
the	build	process	outside	the	Eclipse	
IDE.	The	most	common	method	is	
to	manually	develop	and	maintain	
Ant/XML	scripts.	These	scripts	use	
Ant	Tasks	from	the	Apache	Founda-

tion	to	act	as	a	wrapper	to	the	Java	
compiler.	The	second	method	is	to	
write	scripts	that	call	Eclipse	in	what’s	
called	a	“headless”	mode.	A	script	that	
executes	the	build	in	headless	mode	
acts	in	the	same	way	as	the	point-
and-click	process	inside	the	Eclipse	
IDE,	but	does	the	build	from	a	script.	
And	finally,	the	preferred	method	is	to	
use	a	commercial	build	tool	that	can	
automate	the	creation	of	the	scripts.	
Commercial	tools	that	minimize	the	
use	of	manual	scripts	establish	a	more	
repeatable	and	traceable	build	work-
flow,	the	ultimate	goal	of	any	solid	
development	process.	
	 If	you	don’t	have	the	luxury	of	a	
commercial	build	tool	that	can	create	
a	solid	reusable	build	framework,	you	
must	create	a	manual	build	process	
that’s	as	standardized	as	possible.	A	
“manual”	build	process	refers	to	any	
scripted	build	process	that	has	to	be	
maintained	manually.	Even	if	you	
execute	your	manual	scripts	through	
a	job	scheduling	build	management	
tool,	your	builds	are	still	manual	be-
cause	you	must	manually	maintain	the	
build	logic	contained	in	the	scripts.
	 When	writing	the	manual	build	
process,	your	choices	become	writing	
Ant/XML	scripts	to	perform	the	build	
or	to	use	the	Eclipse	headless	mode	
option.	Establishing	a	repeatable	build	
that	can	be	traced	requires	that	you	
concisely	define	how	the	build	executes	
and	with	what	source	code.	The	use	of	
the	headless	mode	removes	that	level	
of	control.	It	provides	a	little	more	func-
tionality	than	using	the	point-and-click	
process	inside	Eclipse.	When	running	a	
headless	mode	script,	you’re	still	relying	
on	the	Eclipse	IDE	to	control	the	build.	
For	this	reason,	defining	a	build	process	
using	Ant/XML	is	recommended	if	a	
commercial	tool	isn’t	available.

	 If	you	review	any	Ant/XML	script,	
it	may	appear	that	the	process	of	
converting	Java	source	into	Java	jars	
is	complicated.	This	isn’t	necessarily	
true.	Ant/XML	files	execute	in	a	serial	
fashion,	top	to	bottom.	Everything	
must	be	precisely	coded	in	a	par-
ticular	order.	That’s	why	XML	build	
scripts	can	be	very	large	and	difficult	
to	debug.	There	are	some	suggested	
standards	on	writing	XML	scripts,	
but	they’re	not	always	followed.	At	a	
minimum,	XML	build	scripts	should	
follow	a	basic	flow	with	pre-process-
ing	and	post-processing	steps	that	
are	consistent	for	every	XML	script	
created,	planned,	or	unplanned.

Pre-Processing Steps
	 Pre-processing	steps	are	used	to	
establish	the	environment	in	which	the	
subsequent	task	will	execute.	The	point	
of	setting	up	these	pre-processing	steps	
is	to	get	the	source	code	and	variables	
organized	and	do	overall	housekeeping	
before	compilation	starts.	A	common	
mistake	is	to	mix	together	these	house-
keeping	steps	for	each	call	to	the	Java	
compiler	or	before	calling	an	Ant	Task.	
By	organizing	the	pre-processing	steps	
at	the	beginning	of	the	XML	scripts,	
the	build	process	becomes	clearer	and	
easier	to	follow.	It	also	reduces	redun-
dancy	and	results	in	an	improved,	more	
efficient	process.	These	are	the	recom-
mended	pre-processing	steps:

ClassPath
	 The	CLASSPATH	identifies	which	
Java	Classes	are	going	to	be	used	to	
resolve	inter-class	dependencies.	The	
Java	compiler	will	search	the	CLASS-
PATH	in	a	first-found	method	and	use	
a	file	as	soon	as	it’s	been	located.	The	
CLASSPATH	can	include	Jar	and	Zip	
files	and	directories.	

idE

by Steve Taylor

Managing a Standardized Build
Process Outside of the Eclipse IDE

B

Point-and-click solutions won’t cut it

Steve Taylor is president

and CTO of Catalyst Systems

Corporation. He is a senior

developer with 19 years

of experience in both

distributed and mainframe

application development.

Prior to founding Catalyst

in 1995, Steve served as

a technical consultant

assisting companies with

defining a solid build and

release process. In this

capacity, he became expert

in the use of configuration

management and release

tools and recognized the

need for a solid, reusable,

and repeatable build

process. At this time he

began developing the build

procedures that have since

become Openmake. Steve

got his BS in computer

science/mathematics from

the University of Illinois-CU.

JDJ.SYS-CON.com50 August 2006

	 When	setting	the	CLASSPATH	it’s	
important	to	make	sure	of	two	things.	
First,	the	CLASSPATH	should	only	be	
defined	once	in	your	process.	Second,	
only	the	jar	files	and	class	directories	
that	are	used	should	be	referenced	in	
the	CLASSPATH.	Don’t	reference	other	
unused	jars	since	then	the	Java	com-
piler	will	do	more	work	than	needed,	
slowing	down	your	build	substantially.	
And	specifying	only	the	used	jars	will	
make	for	quick	dependency	identifica-
tion.	There’s	nothing	worse	than	at-
tempting	to	trace	jar	file	dependencies	
only	to	find	that	a	large	number	of	jar	
files	aren’t	needed.	This	can	add	sub-
stantial	time	to	debugging	your	builds.
	 The	use	of	wild	cards	is	always	
a	topic	of	debate.	Wild	cards	can	
eliminate	typing	in	your	script,	but	in	
the	end	may	cause	your	build	process	
to	include	more	objects	than	needed.	
List	each	jar	file	in	the	CLASSPATH	ex-
plicitly	to	prevent	any	vagueness.	This	
is	particularly	critical	when	exposing	
your	build	details	for	IT	compliance	
mandates.	Wild	cards	aren’t	traceable.
	 Setting	the	CLASSPATH	should	be	
the	first	task	in	the	Ant	XML	script.

Copying and Renaming Files
	 There	are	cases	in	which	source	
code,	jar	and	property	files	have	to	be	
copied	from	one	location	to	another	
for	the	compiler	to	find	the	file	or	put	
it	in	the	archive	correctly.	Do	yourself	
a	favor	and	minimize	the	use	of	copy-
ing	and	renaming	of	files.	It	makes	it	
extremely	difficult	to	trace	the	archive	
contents	back	to	the	original	source.	
Copying	files	around	also	creates	
a	more	“magical”	build	process.	IT	
compliance	mandates	want	a	clear	
view	into	your	process.	No	“magic”	is	
needed.
	 Instead	of	copying	or	renaming	
the	files,	put	the	files	in	the	correct	
location	from	the	start.	Don’t	use	your	
Ant/XML	script	to	clean	up	a	mistake	
in	file	organization.	This	may	involve	
updating	your	project	directory	struc-
ture	and	making	your	Source	Code	
Management	tool	more	efficient.	As	an	
alternative	to	copying	and	renaming	
files,	the	use	of	the	Ant	Task	“Zip”	and	
its	attributes,	such	as	“dir”	and	“prefix”	
can	handle	getting	source	from	one	
location	and	putting	it	in	the	archive	at	
a	different	location.
	 This	sample	XML	code	from	the	
Apache	Ant	Manual	demonstrates	
using	the	Ant	Task	“Zip”	to	take	one	
source	location	(htdocs/manual)	and	

put	it	in	another	location	(docs/user-
guide):

 <zip destfile=”${dist}/manual.zip”>

 <zipfileset dir=”htdocs/manual”

prefix=”docs/user-guide”/>

 <zipgroupfileset dir=”.”

includes=”examples*.zip”/>

 </zip>

Compile Step
	 The	compile	step	is,	of	course,	the	
heart	of	your	process.	It	will	become	
the	largest	section	of	XML	script.	The	
important	point	to	remember	when	
defining	this	portion	of	your	script	is	
the	management	of	dependencies.

Dependency References
	 With	Ant,	you	can	explicitly	define	
the	dependencies	between	tasks.	For	
example,	the	JAR	task	can	be	dependent	
on	the	JAVAC	task.	Ant	will	also	let	mul-
tiple	task	dependencies	be	established.	
Don’t	be	seduced	by	this	seemingly	
convenient	Ant	Task.	While	it	seems	use-
ful,	it	can	be	burdensome.	When	tracing	
the	order	of	executing	the	various	Ant	
tasks	in	the	Ant/XML	script,	it’s	much	
easier	to	follow	a	dependency	chain	that	
has	only	one	task	dependency	instead	of	
multiple	ones.	For	example:

Scenario 1
JAR	Task	depends	on	JAVAC	Task
JAVAC	Task	depends	on	the	COPY	Task
COPY	Task	depends	on	the	INITIAL-
IZATION	Task
Versus

Scenario 2
JAR	Task	depends	on	the	JAVAC	Task	
and	COPY	Task
JAVAC	Task	depends	on	the	COPY	Task	
and	INITIALIZATION	Task
COPY	Task	depends	on	the	INITIAL-
IZATION	Task

	 As	you	can	see	in	Scenario	2,	there	are	
redundant	Ant	task	dependencies.	For	
example,	the	COPY	Task	is	redundant	on	
the	JAR	Task.	This	redundant	use	of	COPY	
Tasks	isn’t	needed	since	it’s	already	refer-
enced	higher	up	in	the	task	dependency	
hierarchy	being	the	JAVAC	Task.
	 There	will	be	cases	when	you	want	
to	have	multiple	task	dependencies	
as	in	the	creation	of	a	war	file.	In	this	
case,	multiple	task	dependencies	may	
be	needed	to	ensure	that	all	of	the	jars	
are	created	before	the	war.	But	each	jar	
should	have	just	one	task	dependency,	
that	being	the	JAVAC	task.

Identifying Source Code
	 Finding	your	source	can	seem	like	
an	easy	item	at	first,	but	when	ap-
plications	get	bigger	there’s	a	greater	
chance	that	wrong	or	obsolete	code	
is	included.	Using	wildcards	in	the	
Ant/XML	script	is	an	easy	way	to	mini-
mize	the	need	for	typing,	but	for	the	
wildcards	to	be	effective,	the	source	
files	have	to	be	efficiently	organized	
in	a	proper	Java	package	directory	
structure.
	 The	best	way	to	manage	source	is	to	
define	an	efficient	package	directory	
structure.	So	you	must	move	beyond	
your	unique	needs	and	address	the	
package	names	at	a	more	global	level	
in	your	organization.	It’s	best	to	make	
sure	that	a	corporate	Java	package	
structure	is	agreed	on	and	used.	As	
part	of	the	Java	package	structure	
it’s	best	to	keep	the	package	names	
simple.	Really	long	package	names	
can	cause	problems	with	the	file	limits	
on	the	Windows	operating	system.	
Java	compiles	on	Windows	have	been	
known	to	stop	working	when	the	
254-character	limit	is	exceeded.	To	
make	this	problem	even	peskier,	the	
script	may	work	on	one	user’s	machine	
but	break	on	another’s.	This	is	due	do	
the	build	directory	root	name	being	
added	to	the	package	names.	For	
instance,	one	person	may	do	the	build	
in	c:\mybuilds	but	another	may	build	
in	d:\onlinedata\j2ee\development\
code.	The	difference	in	the	directory	
name	can	make	or	break	the	build	by	
pushing	the	254-character	limit.
		 Another	item	that	defines	the	loca-
tion	of	source	code	is	the	use	of	the	ex-
cludes	attribute	of	the	JAVAC	Ant	Task.	
It’s	best	to	remove	the	older	obsolete	
code	from	the	Source	Code	Manage-
ment	tool	and	from	the	file	system	
instead	of	using	the	exclude	attribute.	
Most	SCM	tools	provide	for	renaming	
or	removing	an	item	without	loosing	
all	of	the	history.	SCM	tools	also	allow	
for	comments	that	create	a	level	of	
traceability	on	why	a	piece	of	code	is	no	
longer	required.	Having	this	informa-
tion	in	the	SCM	tool	makes	for	easier	
access	versus	the	information	being	
hidden	in	a	comment	in	the	Ant	XML.

JAVAC –sourcepath
	 The	native	command	line	Java	com-
piler	(javac.exe)	has	an	interesting	flag	
called	–sourcepath	that	provides	a	direc-
tory	concatenation	to	find	the	source	
code.	It	works	on	a	first-found	basis.	So	
once	the	source	has	been	located,	the	

51August 2006JDJ.SYS-CON.com

idE

directory	browse	stops.	There	are	two	
advantages	to	using	this	parameter.	
First,	all	of	the	code	doesn’t	have	to	be	
found	in	the	current	build	directory.	That	
is,	source	code	can	be	found	in	multiple	
locations.	Thus,	the	build	process	only	
has	to	check	out	the	changed	code	and	
find	the	remaining	code	from	a	previ-
ous	full	checkout.	This	will	speed	the	
overall	build	process	by	minimizing	the	
files	to	be	checked	out.	Second,	if	the	
JAVAC	command	is	given	a	Java	file	as	a	
parameter	it	will	then	check	using	the	
–sourcepath	parameter	for	additional	
source	that’s	referenced	by	the	original	
Java	file	and	compile	it	too.	This	process	
will	allow	just	the	changed	source	to	be	
passed	as	the	parameters	to	JAVAC	and	
JAVAC	will	figure	out	all	the	remaining	
dependencies	for	you.

Post-Processing Steps
	 As	with	the	pre-processing	tasks,	the	
post-processing	tasks	should	avoid	items	
such	as	copying	and	renaming	files.	If	an	
archive	has	to	be	given	a	specific	name	
then	that	name	should	be	handled	on	the	
archive	task	instead	of	doing	a	copy	or	re-
name.	The	use	of	multiple	task	dependen-
cies	should	also	be	minimized	to	ensure	
easy	traceability	and	IT	compliance.

Testing
	 One	of	the	common	items	to	do	in	
the	post-processing	phase	is	to	test.	
These	tests	are	usually	unit	tests	such	
as	Junit.	But	these	tests	can	also	include	
some	basic	tests	about	the	archive	itself,	
such	as	checking	to	see	if	the	correct	
deployment	descriptor	and	proper-
ties	files	have	been	used	or	checking	
the	number	of	files	in	the	archive	to	
verify	at	a	basic	level	if	all	of	the	source	
was	compiled.	Another	useful	test	is	to	
check	to	see	if	the	archive	contains	the	
correct	manifest	and	directory	struc-
ture.	Validating	these	items	before	de-
ployment	can	save	you	the	embarrass-
ment	of	a	production	failure.	It’s	best	if	
these	items	are	extracted	and	e-mailed	
to	a	tester	to	verify	their	accuracy	before	
deployment.

Deployment
		 The	deployment	task	should	be	one	
of	the	last	steps	in	the	build	process.	
It	should	be	dependent	on	the	Testing	
task	and	the	Testing	task	dependent	
on	the	Build	task.	But	it	shouldn’t	be	

the	default	task	that	gets	executed.	You	
want	to	give	the	user	the	option	of	just	
building	and	testing	or	building,	test-
ing	and	deploying.	This	lets	someone	
just	deploy.

Variable
	 Beyond	the	pre-processing,	compil-
ing,	and	post-processing	steps	in	your	
Ant/XML	scripts,	managing	variables	
is	also	critical	in	creating	a	more	stan-
dardized	manual	process.
	 Using	variables	lets	an	Ant/XML	
script	be	written	to	execute	on	mul-
tiple	machines.	This	is	a	cautionary	
tale,	however,	because	using	too	many	
variables	makes	an	Ant/XML	script	
hard	to	read	and	debug.	It’s	best	to	use	
variables	for	the	directory	path	on	the	
Jar	files	in	the	CLASSPATH	and	for	the	
source	code	locations.	For	example,	
instead	of	using:

 c:\jdk2\lib\rt.jar you would use

${JAVAHOME}\lib\rt.jar

	 This	reference	will	let	different	us-
ers	have	different	working	locations.	
Again,	the	directory	structure	of	the	
source	code	and	libraries	should	be	
laid	out	efficiently	for	builds.

Machine-Specific Variables
	 If	there	are	any	machine-specific	
items	referenced	in	the	Ant/XML	script	
then	they	should	be	referenced	through	
a	variable	and	abstracted	out.	When	you	
write	the	Ant/XML	script	assume	that	you	
won’t	be	the	only	one	using	the	script.	
	 By	following	a	standard	guideline,	
your	Ant/XML	scripts	can	become	
easier	for	another	developer	in	your	
organization	to	follow	and	so	more	
traceable.	This	is	ultimately	what	
you’re	striving	for.	Traceability	in	your	
build	process	can	only	be	achieved	
if	someone	else	can	follow	the	build	
steps.	By	maintaining	some	standard	
sections	such	as	pre-processing,	
compiling,	and	post-processing,	your	
scripts	should	follow	a	basic	struc-
ture	that	can	be	easily	identified	and	
traced.
	 Commercial	Eclipse	plug-ins	are	
available	that	can	substantially	mini-
mize	the	need	for	Ant/XML	scripting.	
These	tools	provide	a	reusable	build	
framework	through	a	standardized	
interface.	

	 Commercial	build	tools	that	
simply	execute	your	Ant/XML	scripts	
may	be	helpful	in	managing	the	
many	scripts	that	are	created	over	
time;	however,	tools	that	minimize	
your	scripting	effort	are	preferable	
because	they	create	a	solid	reusable	
framework	once	that	can	be	reused	
over	and	over.	
	 The	inherent	problem	of	Ant/XML	
scripting	is	that	the	scripts	are	written	
for	one	jar	and	one	application	at	a	
time.	This	creates	a	lot	of	redundancy.	
Redundancy	equates	to	higher	cost	
and	lower	quality.	Just	as	you	strive	for	
reuse	when	developing	applications,	
you	should	strive	for	reuse	in	your	
application	build	framework.	Using	
scripts	to	do	this	is	close	to	impossible	
because	manual	Ant/XML	scripts	
contain	hard-coded	application	refer-
ences.
	 Commercial	tools	such	as	Open-
make	by	Catalyst	Systems	Corporation,	
Perfect	Build	by	CodeFast,	and	Builder	
by	Serena	address	the	scripting	issue	
directly	by	providing	a	reusable	frame-
work	in	your	build	process.	
Open	Source	tools	such	as	Maven	
will	also	assist	you	in	minimizing	the	
amount	of	scripting	necessary	for	each	
jar	file	you	create.	
	 As	upper	management	demands	
more	accountability	from	the	develop-
ment	process,	the	build	component	
will	be	scrutinized	more	closely.	A	
point-and-click	process	from	the	
Eclipse	IDE	won’t	meet	the	new	IT	
mandates.	Neither	will	overly	com-
plicated	nor	non-standardized	build	
scripts.	Eventually	you’ll	be	forced	out	
of	the	comfort	of	your	point-and-click	
IDE	and	into	a	more	standardized	
method.	Your	choices	will	be	to	rely	
on	Open	Source	languages	such	as	
Ant/XML	and	a	lot	of	hard	work	or	a	
commercial	tool	to	help	you	with	the	
job.	Regardless	of	your	future	build	
requirements,	the	effort	in	creating	
standards	for	the	build	is	critical	and	
well	worth	the	effort.	

References
•	 www.apache.org	–	Learn	about	Ant	
Tasks,	Ant	scripting	and	Maven
•	 www.openmake.com	–	Learn	about	
reusable	scripts	with	Openmake
•	 www.codefast.com	-	Learn	about	
script	generation	with	Codefast		

JDJ.SYS-CON.com52 August 2006

The Flex® Logo is a Trademark of Adobe Systems Inc. ©Copyright 2006. All Right Reserved

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✓
✓
✓
✓
✓
✓
✓
✓
✓

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

©COPYRIGHT 2006 SYS-CON MEDIA. ALL RIGHTS RESERVED VISIT WWW.AJAXWORLDEXPO.COM FOR THE MOST COMPLETE UP-TO-DATE INFORMATION

HYATT REGECNY SILICON VALLEY

he editors of Java Developer’s

Journal are in a unique

position when it comes to Java de-

velopment. All are active coders in

their “day jobs,” and they have the

good fortune in getting a heads up

on many of the latest and greatest

software releases. They were asked

to nominate three products from

the last 12 months that they felt had

not only made a major impact on

their own development, but also on

the Java community as a whole.

 The following is a list of each

editor’s selections and the reason

why they chose that product.

awardS

JDJ Editors’
Choice Awards

T Joe Winchester
Desktop Java Editor

SwingLabs
	 SwingLabs	is	an	open	source	labora-
tory	for	exploring	new	ways	to	make	
Swing	applications	easier	to	write,	with	
improved	performance	and	greater	
visual	appeal.	It	is	an	umbrella	project	
for	various	open	source		initiatives	
sponsored	by	Sun	Microsystems	and	
is	part	of	the	java.net	community.	
Successful	code	and	concepts	may	be	
migrated		to	future	versions	of	the	Java	
platform.
http://swinglabs.org

 Everything that has come out of
SwingLabs – this is an absolutely fabu-
lous open source project that allows
skunk work–type development to occur
outside of the JCP that then gets rolled
back into the Java Standard Edition. It
has created superb frameworks like the
Timing framework to allow crisp and
elegant animation effects, the SwingX
project that has spawned fantastic new
widgets, and APIs including JXPanel
and the whole concept of painters, as
well as nice high-level work like the
data binding project to allow easy GUI
to data connectivity.

The Eclipse Rich Client Project
	 While	the	Eclipse	platform	is	
designed	to	serve	as	an	open	tools	
platform,	it	is	architected	so	that	its	
components	could	be	used	to	build	
just	about	any	client	application.	
The	minimal	set	of	plug-ins	needed	
to	build	a	rich	client	application	is	
collectively	known	as	the	Rich	Client	
Platform.
http://wiki.eclipse.org/index.php/
Rich_Client_Platform	

 This is just an awesome technology
that allows Java developers to leverage
the core plumbings of Eclipse, namely
OSGi, SWT, JFace, and other frameworks,
to create their own desktop application.
It’s already being used very successfully
by a large number of clients and goes
from strength to strength, making it a
powerful way for people to build exten-
sible desktop applications. I think it has
the potential to really change the way
Java client applications are built.

The Java Web Start Improvements for
Mustang
	 Using	Java	Web	Start	technology,	
standalone	Java	software	applica-
tions	can	be	deployed	with	a	single	
click	over	the	network.	Java	Web	Start	
ensures	the	most	current	version	of	the	
application	will	be	deployed,	as	well	as	
the	correct	version	of	the	Java	Runtime	
Environment	(JRE).
http://java.sun.com/products/ja-
vawebstart/

 One of the big, possibly only, reasons
why users today must suffer the poor
usability of “dumb” browsers is because
distributing and maintaining proper
client apps is difficult. HTML makes
this ridiculously easy and is a good
engineering solution, but one that offers
very poor end usability. JWS was always
the promised savior to allow desktop
distribution over HTTP but never really
lived up to its expectations in previous
releases. With the Mustang work now
it looks very, very good, though with
many of the dialogs simplified; better
looking; and it seems like it’s finally
going to allow first class, easy and pol-
ished large-scale distribution of Java
clients to help rejuvenate Java on the
desktop. 	

JDJ.SYS-CON.com56 August 2006

Jason Bell
Contributing Editor

Head First Design Patterns by Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra (O’Reilly
Media)
	 Using	the	latest	research	in	neurobiology,	cognitive	science,	and	learning	theory,	Head	
First	Design	Patterns	will	load	patterns	into	your	brain	in	a	way	that	sticks;	in	a	way	that	
lets	you	put	them	to	work	immediately;	in	a	way	that	makes	you	better	at	solving	software	
design	problems,	and	better	at	speaking	the	language	of	patterns	with	others	on	your	team.	
www.oreilly.com

 Without doubt the most effective book I have ever read and extremely easy to read. Don’t be
fooled by the comical light-hearted way this book looks. The chapter with the intro RMI is the best
I’ve ever come across. All the other design pattern books fade into the distance in my opinion.

NetBeans 5
	 NetBeans	IDE	5.0	includes	comprehensive	support	for	developing	IDE	plug-in	modules	
and	rich	client	applications	based	on	the	NetBeans	platform.	NetBeans	IDE	5.0	is	an	open	
source	Java	IDE	that	has	everything	software	developers	need	to	develop	cross-platform	
desktop,	Web,	and	mobile	applications	straight	out	of	the	box.
www.netbeans.org

 After a bit of a love/hate start with NetBeans I’ve now become a convert. It’s very easy to use
and the enterprise support is excellent. It would be nice to see coverage of the “other” app serv-
ers such as Orion and Resin but that’s a small price to pay. An excellent product.

A4 Journal and a Ballpoint Pen
	 For	me	everything	starts	on	paper,	whether	it	be	sketch	drawings	and	UML	diagrams.	I’ve	
never	mentioned	it	over	the	years	but	I’d	be	really	lost	without	it.	I’ve	had	the	delight	of	look-
ing	back	through	my	journals	of	the	past	five	years	and	seeing	how	I’ve	developed	and	how	
my	ideas	have	developed	with	it.		

Yakov Fain
Contributing Editor

Adobe Flex 2
	 Adobe	Flex	2	is	an	application	develop-
ment	solution	for	creating	and	delivering	
cross-platform	Rich	Internet	Applications	
(RIAs)	within	the	enterprise	and	across	
the	Web.	It	enables	the	creation	of	expres-
sive	and	interactive	web	applications	
that	can	reach	virtually	anyone	on	any	
platform.	
http://www.adobe.com/products/flex/
	

 Adobe Flex 2 is a very potent player in the
Rich Internet Application arena. Flex 2 is a
direct competitor of Java Swing and AJAX.
It offers declarative programming and a
rich library of cool-looking and functional
components. Your compiled code runs in a
Flash 9 virtual machine. Flex 2 offers fast
protocols for data exchange with the server-
side components, server push, data binding,
easy integration with Java, JMS support, and
more. I was very impressed.

IntelliJ IDEA
	 IntelliJ	IDEA	is	a	Java	IDE	focused	on	
developer	productivity.	It	provides	a	com-
bination	of	enhanced	development	tools,	
including	refactoring,	J2EE	support,	Ant,	
JUnit,	and	version	controls	integration.	
http://www.jetbrains.com/idea/

 This Java IDE is the best available today.
Despite the fact that it’s not free (the price is
very modest though), IntelliJ IDEA has a loyal
following of Java experts who can appreci-
ate the productivity gain this tool brings for
a small price. Finding classes, refactoring,
suggesting solutions, even a JavaScript editor
for AJAX warriors…everything is at your
fingertips. The upcoming version, 6.0, will
include a new UI Designer and Google Web
Toolkit support.

WebCharts 3D
	 WebCharts3D	is	a	development	toolkit	
that	offers	flexibility	for	all	aspects	of	rich-
client	and	Web-based	charting	requirements	
and	provides	a	single-source	solution	for	
data	visualization.
http://www.gpoint.com

 This is one of the best charting components
available for Java applications. It’s easy to
learn and integrate with your Swing, JSP,
and JSF applications. The product provides
a rich set of charts, gauges, and maps, and
can generate not only binary streams but also
HTML, which makes it a good choice for AJAX
applications. For Web applications, deploy-
ment consists of adding one JSP and copying
one library to WEB-INF/lib.

57August 2006JDJ.SYS-CON.com

avaOne	has	a	catalyzing	effect	on	
Java	developers:	their	enthusiasm	
and	energies	spike	around	the	
show;	they	ready	their	latest	and	
greatest	Java	technology–based	

projects	and	solutions	for	the	annual	
encounter	with	software	program-
mers	from	around	the	world.	Take	for	
instance	the	JSR	Spec	Leads	–	they	too	
intensify	their	efforts	around	the	show	
to	submit	new	JSRs	to	the	program,	
advance	work	under	development	to	
the	next	stages,	or	finalize	standards.	
JavaOne	is	a	favorite	event	with	JSR	
Spec	Leads	who	don’t	miss	on	the	
opportunity	to	leverage	the	Confer-
ence	as	an	ideal	forum	for	sharing	
their	accomplishments	and	forays	into	
new	Java	standards	projects	with	their	
fellow	developers.	The	show’s	2006	
edition	was	no	exception.	Here	are	
the	JSRs	that	brought	the	JCP	Program	
closer	and	closer	to	the	300	mark	and	
crossed	it	in	less	than	a	month.
	 Modularity	in	Java	is	tackled	by	JSR	
294,	Improved	Modularity	Support	in	
the	Java	Programming	Language,	led	
by	Gilad	Bracha,	Sun	Microsystems.	
The	project	sets	out	to	extend	the	Java	
programming	language	with	new	con-
structs	that	allow	hierarchical	modular	
organization.	The	Spec	Lead	and	
Expert	Group	expect	these	constructs	
to	be	supported	at	the	virtual	machine	
level,	through	modifications	or	exten-
sions	to	the	JVM’s	access	control	rules.	
If	you	are	interested	in	modularity	in	
Java,	check	out	the	JSR	page,	contact	
the	Spec	Lead	for	more	information,	or	
send	your	comments	to	jsr-294-com-
ments@jcp.org
	 Another	JSR	submitted	around	the	
same	time	is	JSR	295,	Bean	Bind-
ing.	It	aims	to	define	an	API	that	
greatly	simplifies	connecting	a	pair	of	
JavaBean	properties	to	keep	them	in	
sync.	As	proposed	by	the	Spec	Lead,	
Scott	Violet	of	Sun,	the	connection	is	
intended	to	be	configurable	with	type	

conversion	and	validation	opera-
tions	being	able	to	be	applied	before	
updating	a	property.	Bean	Binding	will	
be	developed	so	that	it	reduces	the	
amount	of	tedious	and	error-prone	
code	JavaBean	developers	must	write	
by	making	additions	to	the	JavaBeans	
API	that	up-level	connecting	pairs	of	
JavaBean	properties.	
	 The	May	marathon	of	new	JSR	pro-
posals	continued	with	JSR	296,	Swing	
Application	Framework	introduced	by	
Sun	with	Spec	Lead	Hans	Muller	at	the	
helm.	This	JSR	commits	to	provid-
ing	a	simple	application	framework	
for	Swing	applications.	It	will	define	
infrastructure	common	to	most	desk-
top	applications.	In	so	doing,	Swing	
applications	will	be	easier	to	create.	
The	experts	working	on	it	anticipate	
supporting	implementations	for	cur-
rent	Java	releases	as	well	as	Java	SE	7	
(code	name	“Dolphin”).
	 The	next	JSR	submitted	at	the	time	
of	JavaOne	is	JSR	297,	Mobile	3D	
Graphics	API	2.0,	and	is	targeted	at	
Java	ME.	It	was	introduced	by	Nokia	
and	is	shepherded	by	Spec	Lead	Tomi	
Aarnio.	The	specification	is	a	new	revi-
sion	of	M3G	(JSR-184),	which	plans	to	
expose	the	latest	graphics	hardware	
features	on	high-end	devices	while	
improving	performance	and	memory	
usage	on	the	low	end.	The	submission	
of	this	JSR	was	prompted	by	the	needs	
of	developers,	device	vendors,	opera-
tors,	and	consumers	who	are	looking	
for	richer,	smoother,	more	realistic	
graphics	for	games	and	user	interfaces,	
as	the	JSR	page	highlights	that	I	recom-
mend	you	visit	if	you’re	interested	in	
keeping	abreast	of	the	latest	in	the	area	
of	Mobile	3D	Graphics.
	 A	relatively	new	member	of	the	JCP,	
SK	Telecom	Co.	has	already	embarked	
on	developing	a	JSR	for	telematics,	JSR	
298,	Telematics	API	for	Java	ME.	The	
proposal,	currently	under	reconsidera-
tion	ballot,	sets	out	to	define	the	API	

set	for	Telematics	Service	on	mobile	
devices.	A	Java-based	telematics	
standard	could	facilitate	the	introduc-
tion	of	new	value-add	services	related	
to	car	management	ranging	from	911	
emergency	calling	to	complex	driving	
guidance.	SK	Telecom	believes	that	by	
providing	a	uniform	API	set	designed	
for	embedded	devices,	the	existing	
telematics	solutions	and	services	can	
be	modified	in	a	more	interoperable	
way	and	a	variety	of	new	Java-based	
telematics	services	will	emerge	more	
easily.	If	you	are	into	telematics	or	
aspire	to	enter	this	field,	check	out	the	
JSR	page	and	send	your	comments	to	
jsr-298-comments@jcp.org
	 An	active	participant	of	the	JCP,	
JBoss	came	forward	around	the	same	
time	with	a	project	that	became	JSR	
299,	Web	Beans	API.	The	Spec	Lead	is	
Gavin	King,	a	seasoned	lead	and	expert	
group	participant,	who	will	drive	the	
development	of	the	specification	to	
accomplish	a	standard	that	unifies	the	
JSF	managed-bean	component	model	
with	the	EJB	component	model.	The	
result	of	this	work	is	hoped	to	be	a	
significantly	simplified	programming	
model	for	Web-based	applications.	The	
specification	promises	at	the	end	of	
the	standardization	work	to	provide	a	
programming	model	suitable	for	rapid	
development	of	simple	data-driven	
applications	without	sacrificing	the	
full	power	of	the	Java	EE	5	platform.	
If	you’ve	been	following	the	evolution	
of	the	EJB	and	persistence	standards,	
make	sure	you	check	out	this	proposal	
too.	
	 The	JSR	sprint	continued	after	
JavaOne.	LG	Electronics	submitted	
DRM	API	for	Java	ME	shortly	after	the	
conference	and	with	it	the	first	JSR	in	
“the	300	series.”	Dnyanesh	R.	Pathak,	
the	JSR	Spec	Lead	and	the	supporting	
Expert	Group,	will	work	to	define	an	
optional	package	for	developing	Java	
ME	applications	that	utilize	or	interop-

JSr watch

by Onno Kluyt

The JCP Program:
Beyond the 300 Mark

J

JDJ.SYS-CON.com58 August 2006

erate	with	DRM	agents	that	separately	
exist	in	devices.	The	proposed	JSR	
commits	to	providing	standardized	
support	for	digital	content	protection	
and	management	of	the	rights	by	en-
abling	APIs	to	interact	with	the	under-
lying	DRM	agent(s).	Developers	will	be	
able	to	use	this	JSR	for	interacting	with	
the	DRM	agents	for	developing	ap-
plications	that	handle	DRM-protected	
content.	
	 JSR	301,	Portlet	Bridge	Specification	
for	JavaServer	Faces	from	Oracle	fol-
lowed	in	July,	showing	that	there’s	no	
let	up	when	it	comes	to	Java	develop-
ers’	enthusiasm	and	dedication	to	Java	
technology	even	if	it	comes	head-to-
head	with	heat	waves	or	tempting	
vacation	plans.	Michael	Freedman	
will	lead	this	project,	which	attempts	
to	standardize	the	behavior	of	bridge	
implementations	to	ensure	true	
interoperability	for	JavaServer	Faces	
artifacts.	At	the	time	of	writing	the	JCP	
Executive	Committee	(EC)	still	have	to	
vote	this	submission	as	a	JSR,	but	once	
it’s	approved,	if	you	want	to	participate	
in	its	development	I	encourage	you	to	
contact	the	spec	lead.	
	 The	JSR	EC	ballot	of	July	24	will	
carry	two	more	interesting	propos-
als.	One	is	JSR	302,	Safety	Critical	Java	
Technology	from	The	Open	Group	to	
be	led	by	Douglass	Locke.	The	project	
proposes	to	create	a	Java	ME	capabil-
ity,	based	on	the	Real-Time	Specifica-
tion	for	Java	(JSR-1).	The	proponents	
argue	that	safety-critical	systems	need	
a	certifiable	(e.g.,	DO-178B)	Java	en-
vironment.	Certifiability	implies	hard	
real-time	resource	management	and	
generally	very	small	implementations	
with	low	complexity.	The	existing	Java	
ME	and	RTSJ	(JSR-1)	specifications	
contain	too	many	and	too	complex	
functions	to	render	them	certifiable.	
For	example,	Java	ME	and	the	RTSJ	
assume	the	presence	of	a	garbage	col-
lector;	the	proposed	specification	will	

not	assume	the	presence	of	a	garbage	
collector.	
	 The	other	project	on	the	bal-
lot	is	JSR	303,	Bean	Validation.	The	
specification	intends	to	define	a	
metadata	model	and	API	for	Ja-
vaBean	validation	and	will	not	be	
specific	to	any	one	tier	or	program-
ming	model.	The	Spec	Lead,	Jason	
Carreira,	views	this	API	as	a	general	
extension	to	the	JavaBeans	object	
model	and	as	such	expects	it	to	be	
used	as	a	core	component	in	other	
specifications,	such	as	JavaServer	
Faces,	Java	Persistence	API,	and	Bean	
Binding.	This	standardized	validation	
metadata	and	standard	validation	
API	will	be	valuable	across	a	number	
of	application	domains,	from	Swing	
desktop	applications	to	Web	applica-
tions	and	the	persistence	layer.	The	
intention	is	also	to	deliver	this	JSR	as	
a	component	of	Java	SE	7	(code	name	
“Dolphin”)	and	develop	an	imple-
mentation	of	the	spec	as	a	public	
open	source	project,	either	at	java.net	
community	or	the	Apache	Software	
Foundation.
	 As	I’m	signing	off,	I’m	doing	a	final	
check	of	JSR	submissions	and,	yes,	a	
new	proposal	has	just	come	in,	this	
time	a	Java	ME	project	from	Motorola	
and	Ben	Q	Corporation,	JSR	304,	
Mobile	Telephony	API	version	2.	The	
proponents	plan	to	take	this	specifi-
cation	beyond	JSR	253	(Mobile	Tele-
phony	API)	and	include	support	for	
some	technologies	such	as	VoIP.	They	
also	intend	to	address	some	aspects	
related	to	control	of	video	telephony	
sessions.	
	 Forget	the	summer	blues,	Java	
developers	keep	cool	projects	coming	
–	11	new	proposals	in	just	a	few	weeks	
–	which	merit	keeping	an	eye	on.	Stay	
tuned	for	more	in	“the	300	series.”	

Onno Kluyt is director of the JCP Program at Sun

Microsystems and Chair of the JCP. onno@jcp.org

tool	that	struck	the	dual	sweet	spot	of	automating	menial	
work	while	enabling	me	to	remain	creative.	Ever	since	then,	
I’ve	worked	on	EMF	in	my	day	job	and	never	looked	back.
	 	Given	my	own	evolving	ideas,	these	days,	even	when	I	
hear	“well	considered”	objections	that	sound	all	too	simi-
lar	to	my	own,	I	am	quite	certain	that	the	value	of	model-
ing	will	slowly	but	surely	become	clear.	It’s	ultimately	not	
the	modeling	tools	that	are	of	the	greatest	value,	but	rather	
the	models	themselves.			

Ed Merks is co-lead of the top-level Eclipse Modeling Project as well as

the lead of the Eclipse Modeling Framework Project. He has many years

of in-depth experience in the design and implemention of languages,

frameworks, and application development environments. He has a PhD in

computing science and is a co-author of the authoritative Eclipse Modeling

Framework, A Developer’s Guide (Addison-Wesley, 2003). He works for IBM

Rational at the Toronto Lab.

– continued from page 6

AOP	stands	for	aspect-oriented	programming.	It’s	an	inter-
esting	concept	that	allows	you	to	change	the	behavior	of	a	
compiled	application	without	changing	its	source	code.	For	
example,	you	can	implement	a	cross-cutting	concern	like	
logging	after	the	application	was	written	and	turn	it	on	or	
off	as	needed.	AOP	definitely	will	be	used	in	some	applica-
tions,	but	it’s	not	going	to	revolutionize	programming	as	
OOP	did	15	years	ago.
	 The	latest	fashionable	thing	is	AJAX	–	a	self-proclaimed	
savior	of	Web	applications.	You	enter	a	letter	in	an	HTML	
search	text	field	,	and	the	results	comes	back	without	the	
page	refresh.	Time	will	show	if	AJAX	is	the	right	solution	for	
Web	2.0,	but	many	vendors	are	trying	to	make	their	tools	
AJAX-enabled	because	it	sells	well	today.	
	 Meanwhile	Java	developers	go	crazy,	because	of	this	orgy	
of	50+	Web	frameworks	that	do	the	same	thing	as	Struts.
	 During	the	last	three	to	four	years,	lots	of	enterprise	
mission-critical	systems	were	moved	from	the	Unix	to	the	
Linux	platform,	and	this	trend	will	continue.
	 Ruby	on	Rails	is	heavily	promoted	by	a	group	of	en-
thusiasts.	At	this	point	it’s	not	clear	if	Ruby	will	become	a	
commercial	programming	language,	or	just	another	good	
language	such	as	Lisp	or	Smalltalk.	I	don’t	know,	but	I’m	
planning	to	purchase	a	book	about	this	language.
	 Rich	Internet	Application	are	back;	I’m	talking	about	fat	
clients	here.	The	major	players	are	Adobe	Flex	2,	Microsoft	
WPF,	and	Java	Swing	with	JWS,	of	course.		This	is	an	inter-
esting	field	to	be	in	today.
	 What	about	us	programmers?	We	have	to		keep	learning	
more	and	more	buzzwords/tools/frameworks/languages	
to	become	senior	software	developers…oops,	I	meant	to	
say	architects.	Why	not	developers?	Because	only	architects		
can	possibly	figure	out	how	to	put	all	these	unrelated	pieces	
together.
	 I	want	back	in	the	’90s…seriously.		

– continued from page 3

Unofficial History

Open Source Design Tools

59August 2006JDJ.SYS-CON.com

My Observations
[“RIA with Adobe Flex 2 and Java”
by Yakov Fain, Victor Rasputnis,
and Anatole Tartakovsky Vol. 11, issue 5]
	 I	have	been	working	both	with	Java	Swing	
and	ActionScript	while	creating	a	GUI.	Here	
are	my	observations	that	defy	your	state-
ments	in	the	article.
1.	“Imagine	the	amount	of	Java	code	you’d	

need	to	write	to	achieve	the	same	func-
tionality.”	There	are	a	number	of	Java	XUL	
implementations	and	Swixml	is	one	of	my	
favorites.

2.	“...but	we	wouldn’t	have	to	worry	about	
routing	all	events	to	the	event-dispatch	
queue.”	In	Java,	you	use	listeners	and	
handler	functions	to	attach	to	the	GUI	
events.	Events	are	routed	automatically.	
Creating	custom	events	in	ActionScript	
would	take	just	as	much	effort	as	in	
Java	(or	probably	less,	since	it	has	
Observer,Observable	and	other	utility	
classes	in	the	rt	library,	unlike	Flash).

	 Now	the	drawbacks	of	using	Flash	(com-
ponents	v.2)	over	Java:
1.	Flash	components	are	badly	written;	

there	are	many	undocumented	bugs	that	
you	would	never	overcome,	e.g.,	try	add-
ing	a	combobox	to	an	accordion	pane,	or	
a	menu	inside	of	a	scrollpane.	The	most	
awful	truth	about	Flash	components	is	
that	they	are	badly	integrated	with	one	
another	and	putting	them	inside	one	
another	will	most	likely	result	in	some-
thing	quite	unpredictable	(only	frozen	
layers	from	a	component	can	be	seen;	
the	focus	frame	cannot	be	set;	dropdown	
layers	are	displayed	underneath	another	
nearby	components,	etc.)

2.	Flash	components	are	closed	source.	
Even	if	you	care	to	dig	into	the	truth,	you	
wouldn’t	risk	changing	anything	because	
the	bug	is	in	the	layered	structure	of	the	
Flash	drawing	and	there	are	some	con-
straints	on	using	the	depths	of	those	lay-
ers.

3.	There	are	no	skins	for	different	compo-
nents,	and	it’s	unlikely	that	Adobe	will	
come	up	with	something	unbuggy	in	the	
next	release,	since	their	main	interest	is	
increasing	the	feature	set	and	popular-
izing	some	visual	benefits,	but	it’s	hell	for	
programmers.	(Some	4+	releases	in	my	

history	have	proven	that	at	least	to	me.).
4.	Flash	has	no	threads,	no	thread	man-

agement.	If	you	start	some	calculation	
or	even	a	simple	data	manipulation	or	
object	creation	during	some	visualization	
process,	you	get	a	freezer.

	 All	the	rest	about	the	small	size,	video/au-
dio,	Web	integration,	cross-platformedness	
is	true,	but	I	wouldn’t	use	Flash	in	a	project	
with	complex	GUI.

—Vitaly Sazanovich

Vitaly,
	 Thank	you	for	your	feedback.	Let	me	start	
with	one	“platform”	statement:	Flex	is	the	
application	server	solution	with	a	service-
oriented	client	layer	built	on	top	of	the	Flash	
Player.
	 Now,	I’ll	jump	to	the	point	where	you	started	
agreeing	with	us	and	from	there	will	walk	
through	the	list	of	concerns	all	the	way	back.

4. “Flash has no threads, no thread manage-
ment.”
	 I	find	this	rather	hard	to	justify	as	it	is.	
	 Multithreading	capabilities	are	imple-
mented	in	browsers	as	well	as	in	the	Flash	
Player.	You	may	question,	however,	the	level	
at	which	these	capabilities	are	available	to	
a	programmer.	After	all,	the	beauty	of	XML-
HTTPRequest	is	that	it	is	asynchronous,	isn’t	
it?	Otherwise	we’d	be	saying	JAX	instead	of	
AJAX	:).	Similarly,	the	same	asynchrony	has	
been	available	with	Flash	Remoting	since	
2002	or	2003,	if	I	am	not	mistaken.	
	 Let’s	take	your	use	case	–	“some	calcula-
tion.”	Must	be	something	CPU	worthy,	I	
guess.	The	question	is	where	does	it	belong	
in	the	distributed	system,	regardless	of	the	
Swing/Flash	debate.	Perhaps	on	the	server,	
closer	to	data	sources?	Then,	using	the	
remoting	capability	of	Flex/Flash,	I	would	
suggest	a	POJO	running	not	only	in	a	sepa-
rate	thread,	but	also	on	a	separate	machine,	
across	the	wire!
	 Now,	just	out	of	curiosity,	let’s	try	to	
play	without	the	server,	with	Flash	alone.	
Here	is	another	take:	can	you	have	another	
“servant”	application	run	by	the	Flash	Player	
within	the	same	hosting	HTML	page?	Can	
you	interop	via	the	LocalConnection	object	
to	invoke	methods,	pass	parameters	–	all	

with	complete	marshalling	of	complex	data	
types	to	native	objects?	
	 Wouldn’t	it	be	happening	in	a	different	
thread?
	 Perhaps	we	can	come	to	a	more	accurate	
statement:	there	is	no	pre-emptive	mul-
tithreading	within	a	single	Flash	VM.	This	
might	indeed	be	an	issue	if	we	had	to	take	
distributed	computing	out	of	the	picture.
	 But	we	don’t	have	to,	do	we?

3. “There are no skins for different components…”
	 This	one	is	simpler.	If	you	are,	in	fact,	talk-
ing	about	Flex,	which	has	a	totally	different	
code	base	than	Flash	controls,	the	statement	
is	outright	ungrounded.	Flex	controls	sup-
port	pretty	advanced	skinning,	although	my	
fascination	with	the	subject	went	south	after	
I	skinned	a	couple	of	controls.
	 But	then	here’s	another	part:	“…Ado-
be…main	interest	is	in	popularizing	visual	
effects…”

	 Well,	this	is	one	very	popular	illusion,	I	
might	say.	How	about	this	answer:	Adobe	
Flex	offers	developers	a	JMS	adapter	that	
enables	them	to	create	a	producer	or	
consumer	with	one	line	of	XML	code?	How	
visual	is	that?

2. “Flash components are closed source…”
	 I	have	a	secret	to	tell.	Flex	comes	with	full	
sources.	Look	at	them,	step	them	through,	
do	whatever	you	please.	Just	don’t	tell	Adobe	
I	told	you	:).	Seriously,	are	we	sure	we	are	
talking	about	the	same	products	here?
	 Our	article	was	about	Flex.

1. “Flash components are badly written…”
	 If	indeed	we	are	both	talking	about	Flex,	I	
find	their	components	extremely	well	done.	
Not	that	I	doubt	for	a	split	second	that	you	
can	find	a	handful	of	cracks	in	each	of	them.	
But,	being	an	expert,	you	naturally	see	how	
to	avoid	a	problem	–	in	another	split	second,	
don’t	you?
	 Also,	now	that	you	have	the	full	source	
code	of	the	controls	(you	do,	I	kid	you	not),	
what	stops	you	from	overriding	any	given	
method	and	creating	your	own	Accordion	
or	whatever?	The	Flex	community	and	Flex	
engineers	are	very	friendly	people	who	will	
gladly	accept	and	appreciate	any	good	ideas	
you	might	want	to	offer.		

FEEdback

Letters to the Editor

JDJ.SYS-CON.com60 August 2006

Sun Adds Java DB and Swing Visual Designer to JDK and
Enters Next Phase for Java Platform Standard Edition 6
(Santa	Clara,	CA)	–	Sun	Microsystems,	Inc.,	has	announced	it	
will	be	incorporating	Java	DB,	the	Sun	supported	distribution	
of	the	open	source	Apache	Derby	Project,	as	well	as	the	Group	
Layout	component	from	the	NetBeans	GUI	Builder	code-named	
Project	Matisse	(https://swing-layout.dev.java.net/)	into	the	
latest	version	of	the	Java(TM)	Platform	Standard	Edition	6	(Java	
SE	6)	Java	Development	Kit	(JDK).	In	addition,	Sun	announced	
new	agreements	with	Founder	Technology	Group	and	Lenovo	
to	ship	the	Java	Runtime	Environment	(JRE)	on	their	hardware.
	 The	second	Beta	release	of	Java	SE	6	technology	is	now	avail-
able	at	http://java.sun.com/javase/6	.	Developers	are	encour-
aged	to	begin	their	transition	to	the	Java	SE	6	platform	and	lever-
age	the	enhancements	and	expanded	functionality	of	the	latest	
release.	Scheduled	for	final	release	in	the	Fall	of	2006,	the	Java	SE	
6	platform	is	the	result	of	an	industry-wide	development	effort	
that	involves	open	review,	weekly	builds,	and	extensive	collabora-
tion	between	Sun	engineers	and	over	330	external	developers.	In	
addition,	Sun	announced	the	expansion	of	service	programs	for	
Java	SE	6	developers	ranging	from	programming-specific	advice	
to	enterprise	support	with	its	Sun	Developer	Expert	Assistance	
(DEA)	Program	and	Sun	Developer	Service	Plans	(DSP).

QUALCOMM Java Solution Gains New Flexibility with
Multitasking Capability
(San	Diego)	–-	QUALCOMM	Incorporated,	a	developer	and	
innovator	of	Code	Division	Multiple	Access	(CDMA)	and	other	
advanced	wireless	technologies,	has	announced	that	select	
Mobile	Station	Modem	(MSM)	chipsets	now	support	the	concur-
rent	execution	of	multiple	Java	applications.	This	multitasking	
capability	extends	the	existing	features	of	the	QUALCOMM	
Virtual	Machine	(QVM)	Java	solution	and	delivers	a	seamless	
experience	to	wireless	users	simultaneously	running	multiple	
applications.	The	new	multitasking	capability	is	now	available	on	
the	MSM6500	solution,	and	will	be	available	on	select	additional	
chipsets	thereafter.
http://www.qualcomm.com

BEA Announces WebLogic 9.2; Award-Winning Family Raises
the Bar on SOA Enablement
(San	Jose,	CA)	–	BEA	Systems,	a	provider	of	enterprise	infra-
structure	software,	has	announced	the	general	availability	of	
WebLogic	Portal	9.2,	WebLogic	Server	9.2,	and	BEA	Workshop	
for	WebLogic	9.2.
	 BEA	WebLogic	Portal	9.2	is	a	JEE-based	enterprise	portal	server	
that	is	designed	to	help	simplify	the	production	and	management	
of	custom	service-oriented	portals.	Among	new	tooling,	federa-
tion,	and	community	enhancements	in	WebLogic	Portal	9.2	are	
new	dynamic,	adaptive	user	interface	capabilities	with	rich	granu-
lar	features	such	as	enhancements	for	AJAX	support	and	market-
leading	support	for	Web	Services	for	Remote	Portlets	(WSRP).	
Combined,	the	upgraded	portal	is	designed	to	provide	greater	
competitive	advantage	with	increased	flexibility	to	help	adapt	to	
business	changes	and	richer	more	responsive	user	interfaces.
www.bea.com		

nEwS

	

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher fails
to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of the
cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is
fully responsible for all financial liability and terms of the contract executed by the agents or agencies who are
acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to change by
the Publisher without notice. No conditions other than those set forth in this “General Conditions Document”
shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content of their
advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Pub-
lisher. This discretion includes the positioning of the advertisement, except for “preferred positions” described
in the rate table. Cancellations and changes to advertisements must be made in writing before the closing date.
“Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Quest www.quest.com/JavaCode 2

 Altova www.altova.com 978-816-1600 4

 IBM ibm.com/takebackcontrol/flexible 7

 Intersystems www.InterSystems.com/Cache21P 617-621-0600 13

 OPNET www.opnet.com/pinpoint 240-497-3000 15

 SAP TECHED www.sapteched.com 17

 Fiorano www.fiorano.com/downloadsoa 800-663-3621 23

 Cynergy www.cynergysytems/thatsme 27

 Backbase www.backbase.com/jsf 866-800-8996 31

 Tibco www.tibco.com/mk/gi 800-420-8450 35

 Instantiations www.instantiations.com/rcpdeveloper 800-808-3737 43

 RogueWave Software www.roguewave.com/developer/downloads 47

 Roaring Penguin www.roaringpenguin.com 613-213-6599 49

 Real World Flex Seminar www.flexseminar.com 201-802-3020 53

 AJAXWorld Conference & Expo www.AjaxWorldExpo.com 201-802-3020 54, 55

 Northwoods www.nwoods.com 800-434-9820 57

 LinuxWorld Conference & Expo www.LinuxWorldExpo.com 61

 SoftwareFX www.softwarefx.com 63

 Parasoft www.parasoft.com/JDJmagazine 888-305-0041x3501 64

JDJ News

JDJ.SYS-CON.com62 August 2006

